최종보고서 제출양식

겉표지 양식 : (4×6배판(가로19cm×세로26.5cm))

(뒷 면)	(0	면면) (앞 면)
	한국파스퇴르연구소 중장기 발전방향 수립을 위한 연구	한국파스퇴르연구소 중장기 발전방향 수립을 위한 연구 (A Study on the Mid-to Long-Term Development Direction of Institute Pasteur Korea(IPK)) 연구기관: (주)전략컨설팅 울림 연구 책임자:최정욱
	· 과학기술정보통신부	과 학 기 술 정 보 통 신 부

안 내 문

본 연구보고서에 기재된 내용들은 연구책임자의 개인적 견해이며 과학기술정보통신부의 공식견 해가 아님을 알려드립니다.

과학기술정보통신부 장관 이 종 호

제 출 문

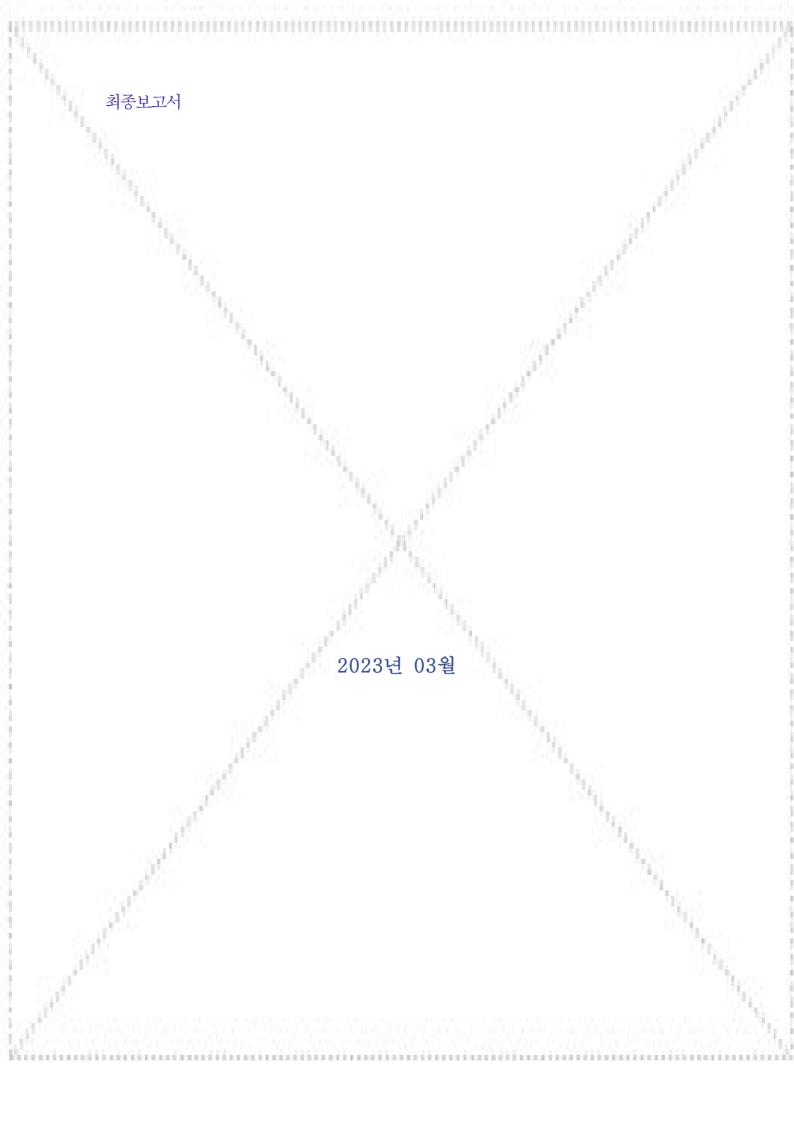
과 학 기 술 정 보 통 신 부 장 관 귀하

본 보고서를 "한국파스퇴르연구소 중장기 발전방향 수립을 위한 연구"의 최종보고서로 제출합니다.

2023. 03. 24.

연구기관명 : (주)전략컨설팅 울림

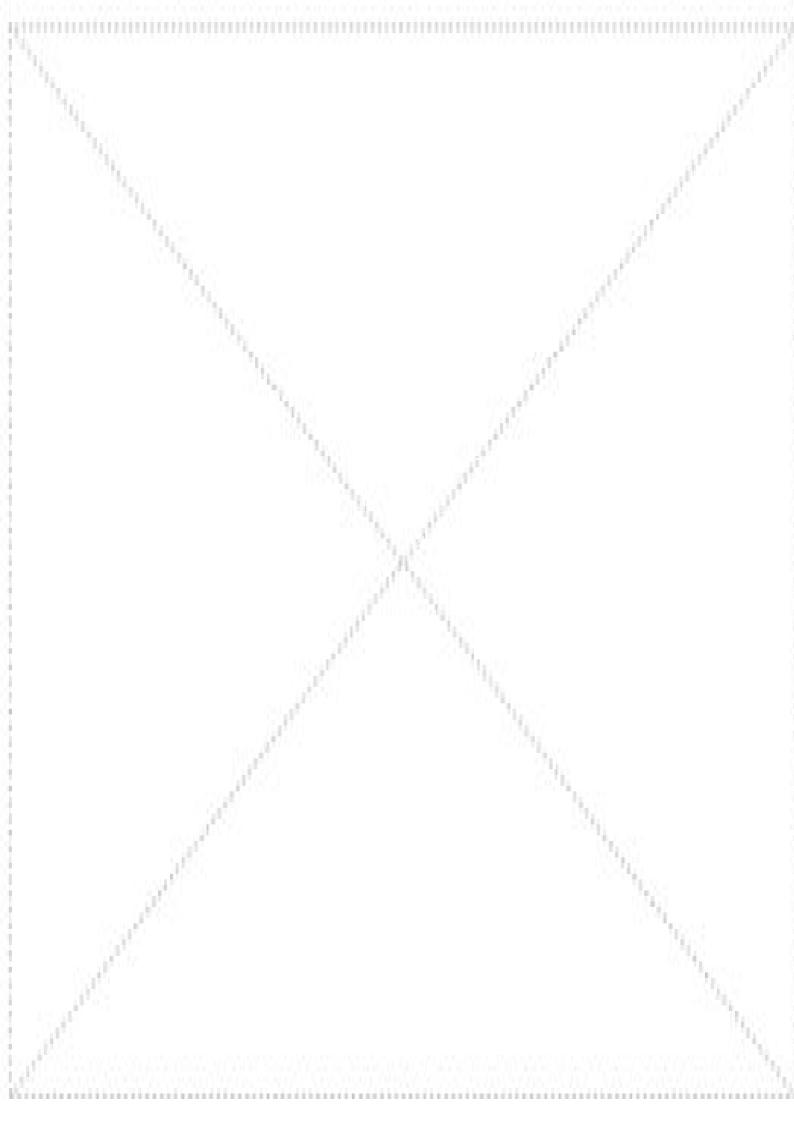
연구책임자 : 최 정 욱


연 구 원:조은정

연 구 원:김재훈

연 구 원:김승현

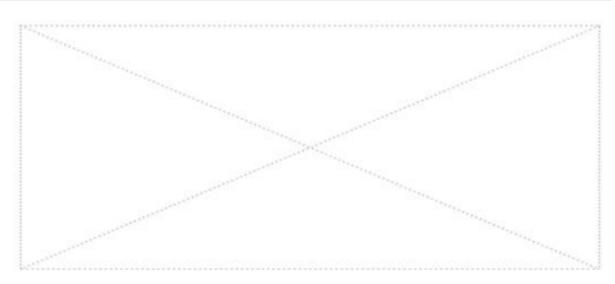
연 구 원:김보배


연 구 원:이택준

목 차

연구 개요	
1. 배경 및 필요성 3	
2. 연구범위 및 프로세스 5	
Ⅱ IPK를 둘러싼 환경 분석	
1. 대내·외 유관 정책 동향 ····· 9	
2. 연구개발 동향 42	
3. 국내 감염병 연구기관 현황 및 체계 62	
4. 해외 유사기관 운영 사례 조사(벤치마킹) 86	
Ⅲ IPK 내부현황 및 성과	
1. IPK 설립 배경 및 임무 95	
2. IPK 조직구조 및 인력 분석 ···································	
3. IPK 연구과제 예산 및 성과 분석 ······ 110	
4. IPK 내부의견 수렴 124	
▼ 중장기 비전 및 전략 도출 129	74
1. 이슈 종합····································	
2. SWOT 분석 및 전략 방향 ······· 134	
3 주자기 비전체계도 수립 138	

V	전략별 세부 내용	100
		139
	1. 신약 개발 기초성과 초고속 Value-up 플랫폼화	141
	2. 국가 감염병 위기 대응 Warm-base 핵심 거점화	144
	3. 고품질 감염병 빅데이터 생산 및 AI 융합형 분석 기지화···	148
i.	4. 우수·전문인력 확대 및 국제 협력 강화 ·······	151
	450	
VI	추진방안 및 기대효과	
		155
	1. 추진일정 및 예산(안)	157
	2. 기대효과	160
	3. 예산 다각화·확대 전략 및 추가 제언 ···································	161
15		
VII	부 록	
		167
	1. 감염병 발생 동향	169
	2. 팀 단위 주요 항목 분석	194
	CNO.	



1. 배경 및 필요성

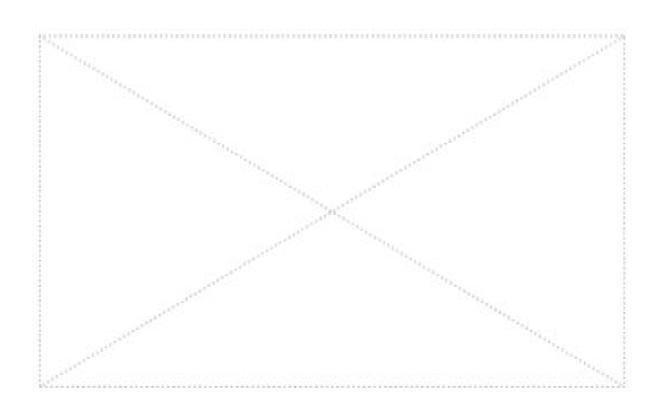
- ▶ 한국파스퇴르연구소만의 독자적 기능 중복 출현, 예산 불안정성 등 연구소의 정체성·안정성 위협 직면
- 한국파스퇴르연구소(이하 IPK)는 '04년 설립 이후 감염병 분야 신약 개발 및 국가적 R&D역량 선진화를 위한 중추적 역할을 담당해옴
 - IPK는 '04년 (프)파스퇴르연구소가 가진 BT 선진연구기술 노하우와 기존 국내의 IT, 화학 등 핵심 기술역량 간 시너지 효과를 통한 기초연구 상용화를 촉진하는 '글로벌 중개연구기지' 역할을 목표로 설립
 - ※ '03.12월 (프)IP (한) 현 과기정통부, KIST 간 IPK 설립 협정을 기반으로 '04.04월 비영 리 재단으로 (KIST 내) 개소
 - 이후 독보적인 초고속·대용량 스크리닝 플랫폼, 국내 최초 BL-3 시설 운영, 글로벌 네트워크 등을 기반으로 감염병 분야에서의 혁신적 후보물질 도출 및 중개연구의 중추적 역할을 수행
- 그러나, 초기 10년 간 안정적인 대규모 예산 지원 종료 후 연구비 축소, 인력 감소 등 IPK 운영상의 불안정성 증가로 혁신적 연구 활동 위축
 - IPK는 초기 '04년 ~ '13년 간 설립 협정을 통해 現 과기정통부로부터 매년 약 120억원의 지원을 받았으며, '05년 경기도 이전 협정을 통해 '06년 ~ '15년 간 경기도로부터 매년 약 30억원을 지원 받음
 - 하지만, 部·道 지원 협정 종료 후 (일부 추가지원이 지속되고 있으나) 예산 규모의 급격한 감소로 연구 활동 및 운영상 난항 직면
 - ※ 部+道 지원 예산 규모 변화 : ('10, 部+道) 160억 → ('19, 部+道 추가지원) 69.1억원 → ('21, 部추가지원, 道지원 ×) 66.6억원
- 또한 최근 코로나19 사태를 트리거 삼아 국가 주도의 감염병 연구소 설립, 출연(연) 기능 확대 등 국가가 주도하는 감염병 연구기반이 강화됨에 따라 그 간 IPK가 가져온 독자적 강점 역할이 분산화 중

- 최근 정부는 코로나19 팬데믹을 겪으며 총력적 감염병 대응을 위해 법·제도 보완 등 정책적 노력과 더불어 백신, 치료제 개발 등 감염병 관련 R&D 투자 전폭적 확대
 - ※ 코로나19 전·후 감염병 R&D 규모 변화 : ('19, 코로나19 이전) 3,140억 → ('22, 가장 최근 연도 기준) 5,081억, 연평균(CAGR '19~'22) 17.4%↑
- 동시에 감염병 중심 국립연구소 설립되고 감염병 대응 목적형 추진단 출범, 정부 출연(연)의 감염병 연구 강화 등 기존 IPK가 주도한 강점 기능과 중복성이 있는 국가 주도 연구기반 확대로 IPK가 가져가는 강점에 대한 가치 하락 위협
 - ※ 국립감염병연구소(질병청, '20.9), 한국바이러스기초연구소(과기부, '21.7), 글로벌백신허브화추진단(복지부, '21.8) 등
- ▶ 한국파스퇴르연구소만의 차별화된 역할 정립 및 자립 기반을 다지기 위한 파괴적인 운영계획 및 미래 청사진 수립 필요
- 향후 안정적인 연구소 운영을 위해서는 그간 IPK가 축적해온 성과와 강점을 기반으로 국가에 기여 가능한 역할 재정립 및 전략적 고도화 계획을 바탕 으로 추가적인 정부 지원의 당위성을 확보하는 것이 중요
 - 글로벌 연구기관(비영리)으로서 정부 지원의 타당성을 입증하기 위해서는 공공 이익 관점에서 시대 및 환경 변화를 고려한 전략적인 정체성 변화가 필요
 - 지난 약 20여 년간 축적한 감염병 기초·중개연구 역량 및 성과를 재조명하고, 국가 감염병 대응체계 내 다른 기관과 차별화된 기여 역할 제시가 중요
- 동시에 IPK 자립화 기반을 조성할 수 있는 미래 수요발굴·대응을 위한 중장기적 기능 확대 및 역량 강화 전략 마련이 필요
 - 향후 미래에 정부지원의 의존성을 줄이고, 더욱 안정적인 기관 운영을 위해서는 IPK 본연의 목적에 맞는 중개연구 중심 기관으로의 연구수요 창출·발굴 등 자립화 역량 제고를 위한 탐색적 시도가 중요
 - 또한 창출·발굴된 수요에 대해 질적으로 높은 수준의 수요만족을 위해서는 자립 새로운 기술 트렌드를 반영한 다양한 연구지원 서비스 역량 확보 및 운영 재원 다양화 전략 수립이 필요

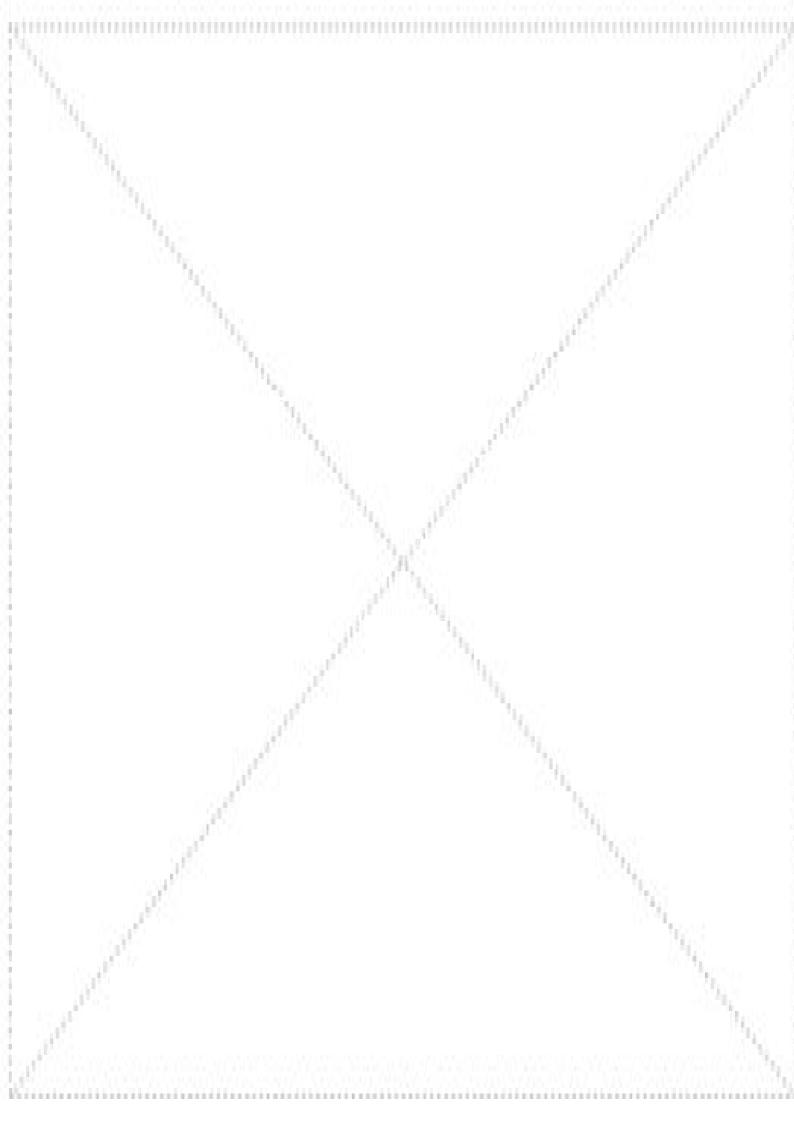
2. 연구범위 및 프로세스

|그림 I-1 | 연구목적 및 내용

🔲 연구개요


- (과업명) 한국파스퇴르연구소(IPK) 중장기 발전방향 수립을 위한 연구
- (과업 목적) 감염병 연구환경 변화에 따른 IPK의 역할 재정립 및 감염병·신약 연구 역량 강화를 위한 중장기 전략 수립
- (기간 및 연구비) 2022. 09. 22. ~ 2023. 02. 21 (5개월)

연구내용 및 범위


- 한국파스퇴르연구소의 설립 및 운영 관련 현황, 전망 분석
 - 감염병·신약 분야 연구환경 분석, IPK 운영 성과 및 내부역량 분석
- 한국파스퇴르연구소의 역할 정립 방안 수립
 - 감염병 분야 타 연구기관과의 차별화·연계 협력 방안 제시
 - IPK 운영 효율화 및 특화 연구분야 제시
- 하국파스퇴르연구소의 중장기 발전방향 마련
 - IPK의 연구 역량 고도화·발전전략 방안 및 주요 과제 발굴

■ 연구추진 프로세스

- IPK의 중장기 발전계획 수립을 위한 본 연구 프로세스는 내·외부 현황 분석에서 비전·세부 계획 수립까지 총 4개의 모듈로 구성
- (모듈1) IPK 성과 심충 분석 IPK의 일반현황 및 성과분석 수행을 통해 IPK의 강점·약점 도출
- (모듈2) 국내·외 환경 및 유관기관 동향 분석 감염병과 신약 관련 국내·외 환경 분석 통해 IPK를 둘러싼 기회·위협 요인 도출
- (모듈3) 중장기 비전·전략 수립 先 도출된 강·약점, 위협·기회요인을 기반으로 IPK 전략 방향 도출 및 중장기적 비전 설정
- (모듈4) 세부계획 수립 전략 방향 및 목표 달성을 위한 중점추진과제 도출, 이를 이행하기 위한 과제별 세부계획을 수립하고, IPK 중장기 발전계획의 기대효과 도출

|그림 I-2 | 연구추진 프로세스

1. 대내·외 유관 정책 동향

1.1. 국제기구 및 조직

가. WHO

- 향후 시급히 대응이 필요한 보건 위협 중 감염병 문제를 강조하며, 예방에서 진단·치료에 이르기까지 혁신적 기술발전 노력이 필요함을 권고
 - WHO는 향후 10년 내 글로벌 보건 위협 요인 중 '감염병질환 예방', '감염병 대유행 대비'등 감염병 관련 사항을 포함하며, 혁신적 발전 노력을 강조('20, WHO)

| 표 Ⅱ-1 | WHO 보건 위협 10대 요인

위협 요인	대응을 위한 주요 강조 내용
① 기후 위기	■ 기후변화로 인한 만성·영양·감염병 질병부담 증가로 대기오염관련
(Climate crisis)	건강위험요인을 줄이는 국가 정책목표 수립 필요
② 분쟁 국가의 보건의료전달 (Health care delivery in areas of conflict and crisis)	■ 분쟁국가의 불안정한 정치, 사회적 여건으로 보건의료전달시스템 접근성 등이 취약, 보건의료시스템 및 인력 보호 필요
③ 보건의료 형평성	 소득으로 인한 국가간 기대수명 차이 여전, 저중소득 국가의 건강
(Health care equity)	향상을 통해 건강형평성 제고 필요
④ 의료치료 접근성	■ 저중소득 국가의 진단 도구, 약물 등 필수 보건의료 물품 접근성
(Access to treatments)	문제, 양질의 의료물품을 제공하여 만성질환 진단과 치료 필요
⑤ 감염성질환 예방	■ 보건의료시스템이 약한 국가들의 감염병 유행 지속, 필수 보건의료
(Infectious disease prevention)	서비스에 예산 투자, 예방접종 시행, 약물내성감소 노력 등 필요
⑥ 감염병 대유행 대비	■ 감염병 대유행에 대한 중장기 대비를 위해 근거기반 보건의료시스템
(Epidemic preparedness)	구축에 투자 필요
⑦ 제품안전	 저소득 국가의 영양불균형 식품 섭취에 대한 근거기반 정책 수립 및 투자
(Unsafe products)	필요, 건강하고 지속가능한 식품 제공과 근거기반 금연정책 실행 필요
8 보건의료 종사자들에	 낮은 급여, 과다한 업무로 인해 전 세계 보건인력 부족으로 보건의료
대한 낮은 투자	서비스 기능 약화되고 있음. 보건인력 확보·훈련에 대한 투자와 높은
(Underinvestment in health workers)	보수 제공 필요
⑨ 청소년 안전	■ 10~19세 사이 청소년의 자살, 손상 등 건강문제 지속, 정신건강 증진
(Adolescent safety)	및 건강위해 행동 줄이는 전략 실행 필요

위협 요인	대응을 위한 주요 강조 내용		
⑩ 보건의료 종사자들에 대한 공적신뢰 향상 (Improving puBLic trust of health care workers)	■ 보건의료 종사자들에 대한 신뢰는 환자의 건강유지에 도움, 일차의료를 강화하고 SNS등 잘못된 건강정보를 교정 필요		
① 의료기술 발전의 혁신과 잠재적 문제 (Capitalizing on technological advancements)	■ 진단·예방·치료 기술의 혁신적 발전으로 잠재적 건강문제 야기 가능, 검토 및 대비 필요		
① 항생제와 의약품들의 위협 (Threat of anti-microbial resistance and other medicines)	■ 양질의 값싼 약물 접근성 편리, 항생제 남용, 열악한 감염관리로 인한 항생제 내성 대응 필요		
⑬ 보건의료시설 위생 수준 (Health care sanitation)	■ 위생시스템이 안 갖춰진 국가를 포함하여 2030년까지 전세계 모든 국가의 모든 보건의료시설에 기본 위생시설, 수질 공급 추진 필요		

자료 : ('20, WHO), 제3차 국가 감염병 위기대응 기술개발 추진전략(안)에서 재인용

■ WHO는 감염병 R&D와 관련하여 효과적 연구개발 환경·기반, 우선순위에 따른 적시성, 신속 유행 대응을 위한 표준화 등을 강조한 R&D 패러다임 제시

- WHO는 서아프라카 에볼라 유행('14)을 계기로 글로벌 감염병 대응력 강화를 위한 R&D 활성화, 효율성 제고를 위한 청사진 「WHO R&D BLue Print」제시('16)
- 「WHO R&D BLue Print」는 우선순위 선정 등 5대 선행 작업을 통해 감염병 R&D에 대한 3대 목표, 9대 과제를 제시

|표 Ⅱ-2| WHO R&D BLue Print 3대 목표 및 9대 과제

5대 선행 작업		3대 목표	9대 과제	
① 병원체 우선		1. 감염병 유행 기간 신속한	1. 효과적인 조정의 틀 수립	
순위 지정 	정	연구개발 착수를 위해	2. 투명한 재원 마련 절차 확립	
② 연구 우선순위		조정능력 강화 및 환경 조성	3. 효과적 커뮤니케이션 장려	
도출 		2. 안전하고 효과적이며	4. 감염병 유행의 위험도 평가 및 우선순위 병원체 도출	
③ 이해관계자 ~ 조정	시의적절한 연구를 위한	5. 진단기술, 치료제, 백신의 신속평가를 위한 R&D 로드맵 개발		
 ④ 대비·대응에		R&D 기속화	6. 규제와 윤리적 틀 마련	
대한 평가		3. 감염병 유행상황에서 신속히	7. 연구설계를 위한 역량 강화	
		대처할 수 있는 새로운	8. 협력을 위한 가이드 및 기술개발	
방안 개발		규범과 표준 개발	9. 규제 및 정책 장벽을 극복하기 위한 자료예측 및 사전준비	

자료 : An R&D BLueprint for Action to Prevent Epidemics: Plan of Action May 2016 [WHO, 2016]

- WHO는 5대 선행작업 중 하나로 신종감염병 중 우선순위 병원체를 선정하고, 병원체별 로드맵 수립, 목표 제품 사항 설정하기 위한 과학자문위원회 운영1)
 - 과학자문위원회는 '15~'18년간 3차례에 걸친 회의를 통해 우선순위를 병원체 선정
 - -최근 코로나19 사태 이후 현재 WHO에서 제시하고 있는 시급대응 필요 우선 순위 병원체는 총 9개 부문으로 제시 중

| 표 Ⅱ-3 | WHO R&D 우선순위 병원체

WHO 우선순위 병원체

- 코로나19 (COVID-19)
- 크리미안-콩고 (Crimean-Congo haemorrhagic fever)
- 에볼라 & 마버그 (Ebola virus disease and Marburg virus disease)
- 라싸 (Lassa fever)
- 중동호흡기증후군 코로나바이러스 메르스&사스 (Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS)
- 니파 & 헤니파비랄 (Nipah and henipaviral diseases)
- 리프트 밸리 열병 (Rift Valley fever)
- 지카 (Zika)
- Disease X

자료: 'Prioritizing diseases for research and development in emergency contexts' from WHO web

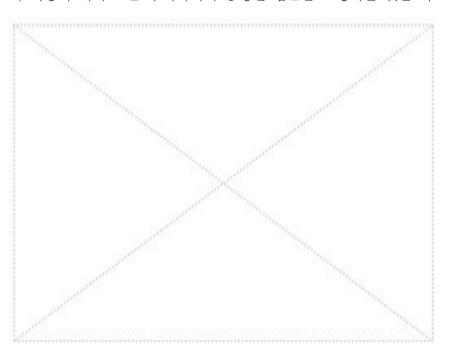
- 세계 의약품·백신 부족 및 공중보건 증진에 대해 5개년 로드맵 「WHO Roadmap 2019-2023」을 수립하고, 지속적·협력적 국가 R&D 필요성에 대해 우선적으로 제시
 - 2018년 5월 제71차 세계보건협의회(World Health AssemBLy)에서 전략적 우선순위 문제 중 하나로 '의약품 및 백신의 전 세계 부족 및 접근 문제 해결' 제시
 - 이러한 '의약품 및 백신의 전 세계 부족 및 접근 문제 해결'에서 우선적으로 필요한 10개 영역의 주요활동을 제시하였으며, 특히 첫 번째로 치료제 및 백신에 대한 지속적이며 협력적 국가 R&D 활동을 강조

¹⁾ WHO 홈페이지, 글로벌 감염병 연구 추진 현황 및 시사점 [S&T GPS] 내용을 바탕으로 정리

|표 Ⅱ-4| WHO 2019~2023 로드맵 주요 내용

주요활동	새부 과제				
	강력한 건강 요구 영역에 대한 지속적인 연구개발 우선순위 선정				
1. 공중보건 요구를 충족시키는 치료제 및 백신 연구개발	건강 연구개발에서의 협력 활동 보장				
71 A 7 A 6 6 1 1 1 1 2	국가의 R&D 역량 향상				
	선택, 건강기술 평가, 국가 내 구현을 위한 프로세스 지원				
2. 공정한 가격 및 금융 정책	공정한 가격 책정을 위한 투명하고 더 나은 정책과 활동 장려				
	자금 조달 정책 및 손해비용 축소 지원				
3. 혁신에 기여하고 공중보건을	혁신과 접근 촉진				
증진하기 위한 지적재산의 활용	기술 지원 및 역량 강화				
및 관리	건강제품, 혁신 및 IP에 대한 접근 관계 연구				
	전략적 조달을 위한 협업 방식 지원				
4. 조달 및 공급망 관리 개선	국가 내 효율적 조달 및 공급망 관리를 위한 지원				
	치료제 및 백신 부족 감지, 예방 및 대응할 수 있는 능력 향상				
	효용을 향상시키는 중재 통합				
5. 의약품의 적절한 처방, 조제 및 사용	질병/조건 별 행동				
X 10	모니터링 지원				
6. 치료제 및 백신의 품질,	규제 시스템 개선, 연계 및 협업 촉진 지원				
안전성, 효능을 보장하기 위한	적격심사 서비스 유지 및 확장				
규제 시스템	건강 제품의 품질, 안전 및 효능을 보장하기 위한 국가 역량 강화 지원				
य भी से से ही हो भी	공중보건 긴급상황 시 규제 마련 개선				
7. 비상사태 대비	필수 치료제 및 백신의 적절한 공급과 사용 보장				
	제약 및 건강제품 정보 공공 이용도 향상				
8. 좋은 거버넌스	국가 시스템에서 향상된 책임 지원				
	정책 대화 지원 및 정책 일관성 개선				
	정기적인 모니터링을 위한 데이터 수집 시스템의 개발, 조화 및 개선				
9. 제품	건강제품 접근에 대한 국제 및 지역적 모니터링 개선				
	정책 결정에 필요한 데이터를 수집, 분석 및 사용하는 국가 역량 강화				
 10. 치료제 및 백신 접근을	직원의 접근 능력 향상				
위한 보건인력	제약 인력 개발 정책 모니터링 및 평가				

자료 : Roadmap for Access 2019-2023 [WHO, 2018]


- WHO는 팬데믹 등 위기 신속 대응을 위한 국제적 협력의 중요성을 하며, 감염병 관련 글로벌 조직(CEPI, GLOPID-R 등)과 긴밀한 협력 관계 구축 중
 - WHO는 CEPI*, G7과 긴밀한 협력을 통해 국제적 공중보건 비상사태(PHEIC)의 신속 대응 전략인 '100 Days Mission(CEPI)'의 이행력 강화를 위한 미래지향적 로드맵 2022-2026 수립·이행에 적극적 참여
 - * 감염병대비혁신연합(Coalition for Epidemic Preparedness and Innovation, CEPI)
 - 글로벌 차원의 감염병 연구 컨소시엄인 GLOPID-R*과 긴밀한 협력을 통해 WHO R&D BLuePrint의 이행력 확보를 위한 분야별 전문가, 데이터, 임상 네트워크, 규제 관련 문제 등에 관해 상호 긴밀한 협력을 추진
 - * 감염병 대비 글로벌 연구협동 네트워크(Global Research Collaboration for Infectious Disease Preparedness, GLOPID-R)
- 최근 22년에는 우리나라 보건복지부와 함께 전세계 백신·바이오 리더들과 미래 감염병 대응을 위한 방향·전략 등을 모색하는 'World Bio Summit 2022 개최'
 - '22년 10월 WHO는 우리나라 보건복지부와 함께 백신·바이오 분야의 전세계 리더들을 모아, 산업 동향 공유, 미래 감염병 대응 전략 등을 논의하는 'World Bio Summit'을 1차로 개최하고 국가 간 연대와 협력의 자리를 마련
 - 포스트 코로나 대비를 위한 백신·치료제에 대한 R&D 투자전략, 넥스트 팬데믹의 효과적 대응을 위한 국제적 노력과 협력 필요성, 규체 협력 등에 관해 논의

나. CEPI²⁾

- CEPI는 감염병 팬데믹을 대응하기 위한 백신 확보 및 사전적 비축 등을 목적으로 다보스 세계경제포럼에서 설립('17년)된 국제 백신 기구로 주요국 백신 기관, 기업, 학술기관 등 전 세계적인 연구협력 네트워크을 구축하고 협력 추진 중
 - 초기 빌&멜린다게이츠재단, 노르웨이, 독일, 일본 등에서 지원금을 받아 설립 이후 에볼라, 지카, 메르스, 라싸 등
 - 이후 백신 후보물질 개발 및 전세계 연구협력 네트워크 구축을 통해 감염병 백신을 개발 하는 글로벌 제약·바이오 기업, 단체 등을 대상으로 협력·지원 중

^{2) 100} DAYS MISSION [G7, United Kingdom 2021], Delivering Pandemic Vaccines in 100 Days [CEPI], 신종감염병 위기대응 기술(진단, 치료, 백신) [KISTEP], 감염병 위기 대응을 위한 핵심기술 도출 및 정부R&D 지원방안 수립 연구 [KISTEP], 글로벌 감염병 연구 추진 현황 및 시사점 [S&T GPS] 內 CEPI 관련 내용 중심으로 재구성

- ※ 우리나라는 '20년 11월 CEPI에 가입하고 '20~'22년 간 매년 300만불을 기부
- ※ 최근 국내 주요 CEPI 협력 기업 중 하나인 SK바이오사이언스는 국내 1호 백신인 '스카이코비원 (GBP510) 개발 성공
- CEPI '100 Days Mission'을 통해 향후 감염병 대유행 대응을 위한 진단·치료제· 백신의 개발·생산을 100일 미만으로 단축하는 개발 신속화에 역량 집중
 - CEPI는 향후 코로나19와 같은 감염병 팬데믹의 위험성을 줄이고, 신속한 대응을 강화하기 위해 백신개발을 100일 미만으로 단축하고자 하는 계획 수립
 - 영국은 이를 지원하기 위해 G7의 아젠다 중 하나로 '100 Days Mission'을 제안하고, G7 서밋을 통해 공동추진 합의 및 이행에 대해 선언 ('21.06)
 - 100 Days Mission의 궁극적 목표는 WHO가 국제적 공중보건 비상사태(PHEIC)'를 선언한 첫 100일 동안 검증된 신속 진단검사, 전 세계적 배포를 위한 대량생산 준비가 된 백신과 초기 치료제 처방에 대해 모든 수혜자에게 공평한 접근을 보장하는 것을 목표로 함

|그림 Ⅱ-1 | 100 Days Mission 개념

- '100 Days Mission'을 위한 진단·백신·치료제 세부 '22~'26년 로드맵을 수립, 치료제 관련해서는 우선순위에 따라 25개 저분자 항바이러스 후보물질 개발 추진
 - (치료제 로드맵 방향) 팬데믹 대비책을 강화하기 위해 대응 보다 사전 예방적 계획으로 전환하고, 치료제를 조기 신속 개발하여 사용할 수 있는 전략적 기술 비축

- ※ COVID-19 특화 약물채창출 항바이러스제는 11개, 현재까지 최소 6개의 mAb가 긴급허가를 승인받았으며, 5개는 후기 개발단계에 있음
- (치료제 로드맵 목표) 2026년까지 우선 순위가 높은 바이러스 계열 중 임상1상 연구를 완료한 25개의 small-molecule 항바이러스 후보물질 개발을 목표로 설정
 - ※ 개발도상국이 감당할 수 있는 가격 수준으로 '프로그래밍 가능한' mAbs 개발 비용을 낮추는 것
 - ※ 국제 협력을 통해 이니셔티브를 통합하여, small molecule 항바이러스제 및 프로그래밍 가능한 mAbs를 위해 파이프라인 구축
- (치료제 로드맵 계획 국제협력) 과제 정보 공유 및 중복을 줄이기 위해 Hover Group, Bill and Melinda Gates Foundation(BMGF), Wellcome, 국제 제약 제조업체 협회(IFPMA), INTREPID 등과 함께 포럼을 구성
 - 신규 치료제, 약물재창출 항바이러스제 등 근거 마련 및 추적
 - -in silico 실험 결과 예측, 동물 모델 데이터 분석 등 정보 공유
- (치료제 로드맵 계획 항바이러스제 임상1상 개발) 바이러스 계열에 대한 신속 억제를 위한 치료제 후보물질 비축
 - ① 신흥 산업 주도 컨소시엄(INTREPID)은 '22년 말까지 바이러스 계열 대항하는 항바이러스 후보 10개를 개발하는 것을 목표
 - ② 민관 협력사(READDI)는 코로나바이러스, 플라비바이러스, 알파바이러스 등 5가지 광범위 small molucule 항바이러스제를 개발
- (치료제 로드맵 계획 임상시험 및 제조 계획 준비) GLOPID-R을 비롯한 글로벌 협력기관들과의 플랫폼 공동연구를 실시
 - -(READDI) small molecule 항바이러스제의 신속한 스케일업, 보급을 위한 '웜베이스' 제조계획 수립
 - ※ 제조업체와의 협력을 통해 새로운 바이러스가 출현하기 전에 후보물질을 위한 임상2, 3상 시험을 설계하고, 효능테스트를 시행할 예정
 - (mAbs 제작 비용 절감) 치료제 포럼과 기존 민관 협력을 통해 열역학적 안정성, 투여 경로 개발, 용량 및 투여 횟수 감소 등 mAbs 개발을 위한 제조 혁신에 투자,
 - ※ 새로운 설비를 위한 새로운 플랫폼 프로세스로 통합하고 기존 인프라를 개조
 - -(치료제 모달리티 대체) mAbs 외 RNAi 등 다른 플랫폼 개발도 지원

| 표 Ⅱ-5 | CEPI '100일 전략(100 Days Mission)' 치료제 로드맵 제안(안)

		Ċ	연도별 로드맵			
권고사항	2022	2023	2024	2025	2026	최종 목표
			부산업 이니셔티			
	(WHO, CEPI) 프로토타입 항바이러스제 개발 가속화 우선순위 바이러스계열 (virus families) 발굴				25개 우선순위 (호흡기) 바이러스 계열을 (virus families) 대상으로 고품질	
전염성 호흡기 병원체를 대상으로 항체 요법 및 프로토타입 항바이러스	(INTREPID) 고품질 저분자 항바이러스제 후보 10종 개발	(INTREPID, 기업) 합의된 우선순위 20개 대상 항바이러스 후보 개발	(INTREPID, 기업) 우선순위 25개 대상 항바이러스 후보 개발	(INTREPID, 기업) 우선순위 25개 대상 항바이러스제 후보 임상 1상 진행		
치료제 개발	(READDI) 우선순위 바이러스 계열 대상 광범위 항바이러스 타겟 발굴	(READDI) 항바이러스 선도물질 화합물을 전임상 개발 추진	(READDI, INTREPID, 기업 + 파트너) 후기 전임상 및 초기 임상 개발 시작, 임상시험계획 수립	(READDI, INTREPID, 기업 + 파트너) 임상 1상을 통해 저분자 항바이러스 후보 식별, 임상 2/3 시험계획 및 웜베이스 제조계획 수립	저분자 항바이러스제 후보 확보 (임상 1상 완료)	100일 이내 조기 개입이 가능한 초기 치료요법 구축
단일 클론 항체 및	치료제 포럼 단일 클론 항체 향상 (열역학적 안정성, 투여량 등 향상)	및 민간협력 투자가능 단일 클론 항체 타겟 확보	단일 클론 항체 생산비용을 그램 당 75\$ 미만으로 감소	단일 클론 항체 생산비용을 그램 당 50\$ 미만으로 감소	단일 클론 항체 생산비용을 그램 당 25\$ 미만으로 감소	
단일 글론 양세 및 기타 치료제 제조방식 단순화 및 저가화에 투자	Disease X 대응 항바이러스제 개발 * (예시) siRNA, 스테이플 펩티드, inhibitor 추론	풍토병의 항바이러스 플랫폼 기술 확보	풍토병의 ' 플랫폼 기ई		Disease X 대상 신속 프로그램 가능한 항바이러스 기술 확충	
(CEPI) 국제 치료제 R&D 개발 및 조정	INTREPID, READDI, Hover Group,	향후 마일스톤	- 확정 후 CEP	I에 의해 보고	지속가능한 R&D 생태계 확보	

 권고사항	연도별 로드맵					최종 목표
전고사양	2022	2023	2024	2025	2026	적은 극표
	Wellcome,					
	BMGF 등					
	치료제 포럼				+	
체계에서 CEPI	운영				국제 협력 및	
역할 강화	치료제에 대한				치료제 R&D	
	전략적 목표와		(INTREPID)		투자 개선	
	투자 계획을	아카테미 -	→ 산업계 신속·	한 중개연구		
	제시					

※ INTREPID : 신흥산업 주도 컨소시엄 emerging industry-led consortium

※ READDI : 민관 협력체

자료: 100 Days Mission-First Implementation Report [G7, United Kingdom 2021]

다. GLOPID-R (& APIS)

- 감염병 분야의 글로벌 컨소시엄으로 WHO R&D BLueprint와 긴밀한 협력을 통해 감염병 대응 연구가 신속 진행 될 수 있도록 유관 기관 네트워킹을 통한 협력 주도
 - GLOPID-R은 WHO와 각국의 연구펀딩 기관들이 모여 구축한 감염병 대비 글로벌 연구협동 네트워크로 현재 우리나라 한국연구재단, 생명硏 포함 전세계 29개국, 33개 자금 기관 참여 중
 - 팬데믹 우려가 있는 새로운 감염병 발생 시 48시간 내 신속한 자금지원을 통한 감염병 대응 연구추진을 할 수 있는 유일한 지원 시스템
 - WHO R&D BLueprint와 협력을 통해 신속한 감염병 대응 연구 지원을 위한 다양한 워킹그룹 운영, 데이터 공유, 임상시험 네트워킹, 규제기관과의 협력 등을 주도
- 최근 'GLOPID-R, 아시아-태평양 지역 감염병 실드 학술회의' 개최 등 지역 단위 신종 감염병 모니터링, 지역 신속 대응·협력 체계 등 지역 단위 대응 지원 노력 추진 중
 - 아-태 지역의 열대성 기후, 높은 인구밀도 등 신·변종 감염병 발생 환경에 따른 국가 간 협력 필요성에 공감, 한국 주도하에 아-태 지역 감염병 신속 공동 대응체계 마련을 위한 '아-태 지역 감염병 실드(이하 APIS)*컨퍼런스' 개최('22.11)
 - * 아시아-태평양 지역 연구협력 중심지(Asia-acific Infectious Disease Shield, APIS)
 - APIS는 컨퍼런스를 통해 GLOPID-R 주요 활동 경과, 아-태 지역 감염병 연구 현황 및 우선순위, 향후 연구협력 및 연구비 지원 방안 논의 등 지역 내 감염병 대응력 제고를 위한 주도적 협력·지원 노력을 추진 중

참고 아시아-태평양 >	지역 감염병 실드(APIS) 개요
설립 배경 및 목적	주요 내용 및 추진체계
(배경) <u>아</u> —태 지역의 열대성 기후, 높은 인구밀도 등 신변종 <u>감염병의 발생과 유행이 쉬워</u> 국가 간 활발한 <u>협력이 필수,</u> 그러나 <u>지역 내 공조 체계는 미진</u> 하다는 문제인식에 따라 우리나라 주도 하 <u>아</u> —태 지역 감염병 연구 협력 중심지 구축을 추진	(주요내용) 아-태 지역 연구자금 지원기관 간 연계를 통해 평상시 감염병 <u>공동대응 연구</u> 를 지원하고, 장기적으로 병원체 등 감염병 연구자원 공유, 서열 분석 및 기전 연구를 통한 감염병 위기 대비 (추진체계)
(목적) <u>아태지역</u> 중저소득국 감염병 연구지원 현황 및 연구 우선순위 분석을 통한 <u>감염병 공동 대응 및 국제</u> 자금기관 간 연합 지원	대표(의장) 대한민국 (한국연구재단/생명硏) 지문위 (위원장) 일본(AMED) 아시아—태평양 지역 감염병 실드(APIS) 연결망 회원국(계획) 동남아시아 라오스, 말레이시아, 베트남, 인도네시아, 필리핀 등 남아시아 네팔, 방글라테시 등

자료 : 한국 주도로 아시아-태평양 지역 감염병 공동 대응을 위한 연구협력 중심지를 구축한다 [과기부, 보도자료 22.11.09]

1.2. 해외 주요국 동향

가. 미국

- HHS(보건복지부) 산하에 CDC(질병통제예방센터), NIH(국립보건원), FDA(식품 의약국) 등을 독립적으로 운영하며, 감염병 대응 전략 및 글로벌 보건안보 구상(GHSA) 발족 등으로 감염병 대응
 - ※ 美 보건복지부(Department of Health & Human Services, HHS)는 공공보건사업의 추진, 알코올, 마약, 정신질환 관리, 질병 통제, 식·약품 관리 등을 수행
 - 美 CDC는 감염병 대응 역량을 강화하는 프레임워크 제시, 이를 뒷받침 하기 위한 로드맵 기반 구체적 실행방안 마련
 - -(CDC Infectious Disease Framework)³⁾ CDC의 감염병 대응 활동을 총괄하는 프레임워크로, 감염병 예방 및 관리, 위협에 대한 대응 역량을 강화하여 안정적인 미국 공중보건체계 구축을 목적으로 실행

| 표 Ⅱ-6 | CDC Infectious Disease Framework의 영역 및 우선순위

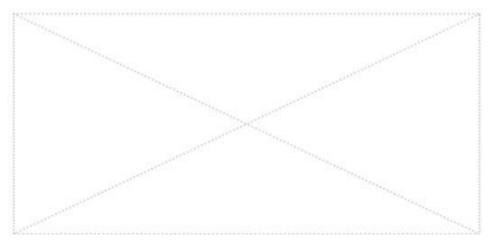
영 역	우선 순위
	공중보건학적 중재를 추진하기 위한 감염병 감시체계 현대화
1. 감염병 감시, 진단과 역학 조사를 포함한	공중보건과 임상영역 진단의 역할 확대
공중보건의 기본 역량 강화	역학조사 및 대응 역량 강화
	공중보건 서비스 지속 및 강화에 필요한 인력 개발·훈련
2. 감염병 감소를 위한 영향력 있는	질병 감소를 위한 고영향 중재 파악과 타당성 검증
공중보건학적 중재 파악과 실행방안 마련	고부담 감염병 감소를 위한 효과 입증 도구와 중재 활용
3. 감염병 예방, 발견과 통제에 대한 정책	근거기반의 효율적 정책을 지원하기 위한 과학적 자료 확보
개발 및 선진화	감염병 예방, 발견과 통제 정책 선진화

자료: A CDC Framework for Preventing Infectious Diseases: Sustaining the Essentials and Innovating for the Future [CDC, 2018]

 美 국립보건원 NIH는 건강증진과 질병 극복을 위한 연구수행 및 지원활동을 추진, 특히 감염병 관련해서는 국립알레르기 및 감염병연구소(National Institute of Allergy and Infectious Diseases, NIAID) 운영

³⁾ CDC(2018), A CDC Framework for Preventing Infectious Diseases: Sustaining the Essentials and Innovating for the Future (CDC)

- NIH는 RADx(Rapid Acceleration of Diagnostics)프로그램을 추진하고, 진단 기술 상용화의 가속화 기반 마련
 - 개발·검증 및 임상 테스트를 통한 상용화 가속화, AI 등 신기술을 활용한 바이러스 식별 연구 등 4가지 RADx 프로그램* 운영
 - * RADx-Tech, RADx-UP, RADx-rad, RADx-ATP
- 美 NIAID는 새로운 공중보건 응급상황에 신속 대응을 위한 ACTIV 프로그램 주도 등 위험 가능성이 높은 주요 감염병에 대한 치료제 및 임상연구 수행
 - (치료제 개발) 코로나19 및 HIV를 중심으로 항바이러스·항체치료제 임상시험 연구 및 미래 대비를 위한 유전자 치료법 개발 등을 추진 중
 - 코로나19, 에볼라, 크리미안콩고·라싸 등 기전, 혈장 치료, 항바이러스제, 면역 치료 Target 연구, 영장류 효능평가, 유전자치료 Lead 연구 등
 - HIV/AIDS-SIV 연계, 만성·유행성 감염, 급만성 간염, 장관감염의 기전, 유전자 치료 Target, 항바이러스 Target, 면역치료 기전 등의 치료법 연구
 - (ACTIV 프로그램) NIAID가 중심이 되어 연구를 수행 중인 감염병 위기 대응 신속형 임상 체계를 통한 초고속 감염병 치료·중재·백신 개발 추진 프로그램 운영
 - 전임상, 후보물질 선정, 임상평가, 후보평가, 데이터 공유와 관련한 백신 및 치료제의 신속 개발을 위한 파트너십 프로그램으로 정부기관, 비영리기관, 기업으로 구성
 - 백신 및 치료제 후보 우선순위 선정, 임상시험 네트워크 연계를 통한 새롭고 용도가 다른 후보를 신속·효율적으로 테스트할 수 있는 지침제공에 목적


| 표 Ⅱ-7 | 미국 ACTIV의 4개 신속 집중 영역

	구분	주요 내 용
1	전임상 평가 방법 표준화 공유	 중앙 집중식 프로세스 및 저장소 구축 Biosafety level-3 시설에 대한 접근 확대 검증된 동물 모델에 대한 접근 확대 유익한 분석법 식별을 위한 접근법의 비교 강화
2	잠재적 치료 후보 임상 평가의 우선순위 지정	 안전 프로파일 보유 잠재적 후보의 완전한 인벤토리 개발 마스터 프로토콜 설계, 실행 및 공개 공유 단일 제어 도구를 사용하여 시험 효율성 향상
3	임상 시험 용량 및 효과 극대화	 기존 임상 네트워크 연결, 다양한 인구 및 질병 단계 전문화를 포함하여 용량 및 기능 구축 NIH 네트워크의 인프라 및 전문 지식 활용 네트워크를 통한 조정 메커니즘을 구축하여 시험을 신속하게 진행 사이트 간 발생 빈도를 추적하고, 향후 용량 계획
4	진보된 개발	■ 지식을 공유 할 수 있는 협업 Framework 구축

자료: '코로나19' 국내외 뉴스모니터링 [생명공학정책연구센터]

나. EU

- Horizon Europe을 통해 감염병 분야 투자를 추진하고 ECDC를 중심으로 회원국 사이의 협력·감시체계 구축 등 감염병 대응 정책 마련
 - (Horizon Europe)⁴⁾ 개별적으로 추진되었던 과학기술 R&D 프로그램을 통합하여 연구 재정을 지원하는 프로그램으로, 감염병을 포함한 3대 중점 추진전략 및 13개 세부 전략으로 구성
 - Horizon Europe은 유럽 내 가장 큰 규모의 R&D 지원 프로그램으로, '글로벌 과제와 산업 경쟁력'에는 '21년에서 '27년까지 총 527억 유로를 투자할 예정이며, 이 중 질병 및 감염병이 포함된 건강(Health) 분야에 77억 유로의 투자를 추진
 - (ECDC) 질병통제관리센터를 주축으로 전염병 감시 및 연구·검사 네트워크 구성, 조기 경보 및 대응, 과학적 의견 제시, 기술적 지원과 긴급 상황에 대비 준비 수행
 - '21년, 중장기 전략으로 'ECDC strategic 2021-2027'을 새롭게 발표, 기후변화 및 공중보건의 디지털화에 따른 대응 전략 등을 통해 유럽의 감염병 대응체계 구축
 - 통계 분석 및 역학 데이터를 활용하여 감염병 통제에 관한 방법론을 개발하고, 공유하여 EU와 협력국의 공중 보건 정책 수립을 도움
 - EU와의 연구 및 혁신 이니셔티브, 협력국의 디지털 혁신 지원 등을 통해 감염병 출현과 관련된 미래 동향을 파악하고 대비

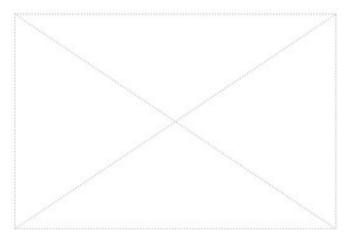
자료 : ECDC(2021)

|그림 Ⅱ-2 | ECDC의 프레임워크 (2021-2027)

⁴⁾ https://www.horizon-eu.eu/

- 감염병 치료제 지원과 관련해서는 '21년 10월 EU 집행위는 코로나19 유망 치료제 목록 발표, 유망 후보의 임상시험 결과를 토대로 공동구매 추진 중
 - (선정기준) 과학적 접근 및 기술의 타당성, 개발단계, 임상시험 결과, 주요 안전성이슈, 변이바이러스에 대한 효능, 의료기관에서의 활용 적합성, EMA 규제심사진행 여부, 다양한 치료제 포트폴리오 구성 등
 - 최근 EU 집행위는 'remdesivir', 'Ronapreve', 'Xevudy', 'bamlanivimab과 etesevimab' 4개 치료제에 대해 공동구매 계약을 체결하는 등 유망 치료제 실용화·보급 추진

|표 II-8 | EU 집행위 10개 유망 치료제 목록


구분	10개 유망 치료제 목록		
항바이러스 단일클론항체 3개	■ Ronapreve : Regeneron社와 Roche社가 개발 중인 두가지 단일클론항체의 조합 (casirivimab + imdevimab)		
	■ Xevudy : Vir Biotechnology社와 GSK社가 개발중인 sotrovimab		
	■ Evusheld : AstraZeneca에서 개발중인 두가지 단일클론항체의 조합(tixagevimab + cilgavimab)		
경구용	■ Molnupiravir : Ridgeback Biotherapeutics社와 MSD社 개발 중		
항바이러스제 3개	■ PF-07321332 : Pfizer 개발 중		
	■ AT-527 : Atea Pharmaceuticals社와 Roche社 개발 중		
면역조절제 4개	■ Actemra(tocilizumab) : Roche社 개발 중		
	■ Kineret(anakinra): Swedish Orphan Biovitrum社 개발 중		
	■ Olumiant(baricitinib): Eli Lilly社 개발 중		
	■ Lenzimulab : Humaningen社 개발 중		

자료 : '코로나19' 국내외 뉴스모니터링 [생명공학정책연구센터]

다. 영국

- 영국은 바이러스 감염병을 국가 안보 위협 요인으로 인식하고 '국가위험 등록부'에 등록 2~3년 주기로 대비를 위한 국가적 방침 전달 중
 - '20년도 '국가위험등록부'에서는 세균성 감염병 → 바이러스성 감염병으로의 변화 방향을 언급하며, 신속한 백신 확보, 진단 능력 개선 등을 강조
 - 백신 개발의 신속화. 대량 생산 능력 제고 등을 위한 대규모 투자 집행
 - -COVID-19와 관련한 신 진단기술의 실용화·보급 촉진을 통해 진단 능력과 추적 역량 개선
 - ※ 진단능력의 개선 : 2,000건/일('20.03) → 500,000건/일('20.11)

- 데이터 기반의 감염병 현황 분석과 평가를 위한 데이터사이언스·공중 보건 등을 통합한 전문센터인 공동 생물 보안센터(JBC, Joint Biosecurity Center)설립('20.05)
- NHS 국민보건서비스는 영국의 대표적인 공공의료 시스템으로 국민 공중 보건을 목표로 하여 비상상황 대응체계 구축 및 지속적으로 업데이트 진행
 - 공중보건에 위험을 미칠 수 있는 위급상황을 대비하기 위한 위기대응계획에 관한 프레임워크(EPRR, Emergency Preparedness, Resilience and Response)를 지속적으로 발표하며, 이에 감염병 등의 파급력을 최소화하기 위한 체계 마련
 - -'21년 COVID-19와 같은 팬데믹 사태를 대비하기 위한 'EPRR 연간 보고서' 내 팬데믹 관련 대응 내용 구성 및 EPRR팀의 확장 필요 기술

자료 : 감염병 위기 대응을 위한 핵심기술 도출 및 정부R&D 지원방안 수립 연구 [KISTEP]

|그림 Ⅱ-3 | NHS England의 EPRR 대응 체계

- NHS는 코로나19가 의심되거나 확인되어 입원한 환자들에게 도움이 될 수 있는 치료법 식별을 목표로 'Recovery Trial' 수행
 - ※ 영국 3개 지역(잉글랜드, 스코틀랜드, 웨일스) 및 해외 3개국(인도네시아, 네팔, 베트남) 소재 186개 병원 참여('21.08.30. 기준)
 - 코로나19 치료제 개발을 위한 임상시험 지원 프로그램으로 유효성 검증 임상시험
 마스터 프로토콜 마련을 통해 코로나19 환자에게 유용할 수 있는 치료법 비교
 - 총 9개의 약제에 대한 무작위 임상시험 수행을 통해 덱사메타손, 리제네론 단일항체, 토실리쥬맙 등 3개 치료제에 대한 효능 증명을 위한 체계적 운영회 구성 및 관리
 - ※ 균일적 데이터 모집 및 객관적 분석을 위한 데이터 모니터링 운영회
 - ※ 임상 프로토콜 개선 및 평가 기준 검토 등 임상시험 운영위원회

라. 일본 🖂

- 과거부터 감염병 대책 강화 필요성이 대두, 「국제적으로 위협이 되는 감염병 대책 강화에 관한 기본계획(안)(2015~2020)」을 통해 5가지 중점과제 추진
 - 서아프리아 에볼라 유행과 한국의 MERS 발병에 따라 감염병 대책 강화 필요성이 대두됨에 따라 국제적으로 위협이 되는 감염병 대책 강화에 관한 기본계획 (안)(2015~2020)」수립 추진
 - 해당 기본계획을 통해 감염병 발생 시 국제적으로 주도적 역할을 수행하고,
 일본 국내에서의 감염병 대책 강화를 지향

|표 Ⅱ-9| EU 집행위 10개 유망 치료제 목록

구분	10개 유망 치료제 목록
1. 개발도상국 감염병 대책 강화	 글로벌 헬스 거버넌스의 새로운 틀 구축에 공헌 감염병 위기시 대응하는 자금 제공 메커니즘 구축 평시부터 개발도상국의 보건시스템 강화 및 정비 지원
2. 국제 감염병 대응 인재 육성·파견	■ 연수 프로그램정비, 인재 등록 시스템 구축, 인재 파견, 커리어패스 지원 등 일련의 시스템을 확립해 감염병 위기 시 개발도상국 및 국제기구에 대한 신속하고 효과적인 인적 협력을 실시
3. 감염병 위기관리 체제 강화	 BL-4((Biosafety level-4) 시설을 가지는 국립감염병연구소(NIID, National Institute of Infectious Diseases) 기능 강화 및 공적 검사 기관에서의 전국적인 검체 검사 체제 강화 국립감염병연구소의 WHO, 타국, 재외 공관 등과의 제휴를 강화하고 해외로부터 정보 수집 및 리스크 평가를 강화
4. 감염병 연구 체제 추진	 BL-4 시설을 중심으로 감염병 연구거점 형성 및 감염병 연구 기능 강화 감염병에 관한 기초연구 인재 육성, 의약품 창출을 위한 연구개발을 추진하고 이를 위한 네트워크나 제휴·협력의 존재 방식 등을 검토·조정
5. 전염병 국내 대처 능력 강화	■ 국제적으로 대응이 요구되고 있는 '항생제 내성 대책(AMR, antimicrobial resistance)을 강화해 국제협력을 추진하고 관계 기관의 체졔 및 기능 강화를 통해 국내 대처 능력을 향상

・小豆: 「国際的に脅威となる感染症対策の強化に関する基本計画(案)(概要)」,[首相官邸,2016]

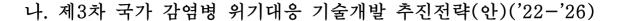
- 정부 주도의 산업 등 사회 전반적으로 디지털 전환 가속화, 일본 의료 연구 개발기구(AMED)와 국립감염증연구소(NIID) 협력을 통한 감염병 연구개발을 지워하고, 특히 임상 부문에서는 각 코어센터와 협력하여 지워
 - ① 일본의료연구개발기구(AMED)를 통한 코로나19 관련 R&D 지원
 - ※ AMED는 '13년 아베내각(총리실)의 "일본재흥전략"의 일환으로 「건강·의료전략 추진법」을 제정하여 내각부, 문부성 재원으로 의료분야 기초부터 실용화까지 지원하는 연구개발 전문기구

- ② 긴급대응 예비비 보조
- ③ 신종 감염병 연구개발 플랫폼 및 진단장비 개발 지원
- ④ 코로나19 검사, 진단, 백신, 치료제, 데이터 수집 관련 연구지원과 백신 개발을 위한 국제협력 강화

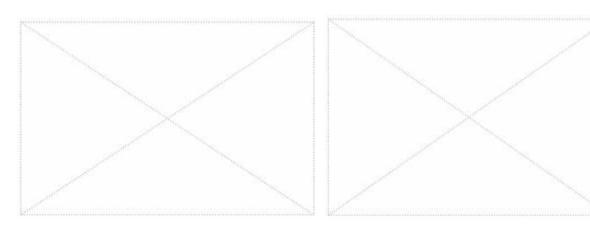
|표 Ⅱ-10| 일본 코로나19 대응 감염병 연구기관 간 공동협력·연계 현황

기관명	상위부처	역할
국립감염증 연구소(NIID)	후생노동성	 감염병 감시/정보수집/분석, 기초/응용연구, 역학조사 등 시약/제제 효과 검증, 후보물질 발굴 후 AMED 협력 연계
일본의료연구 개발기구 (AMED)	내각부 (문부성, 후생성 ,경산성 참여)	 감염병 외에도 보건의료분야 전체 기초-실용화 지원 (연구분야) 의약품 및 혁신적 신약개발, 의료기기·헬스케어, 재생의료·유전자치료, 게놈기반 정밀의료, 질환기초연구, 실증연구기반(임상) 구축, 국제공동연구 시장신출을 목표로 진단제, 치료제, 백신을 개발/임상시험 실시 NIID가 기초개발 → AMED 협업을 통해 실용화

- 치료제 개발과 관련 최근 '21년에는 '코로나19 긴급경제대책'을 발표하고 기존 독감·급성 췌장염 치료제 등을 코로나19 치료제로 재창출하는 방안을 모색
 - 일본 후생노동성은 코로나19 치료제 개발 중인 일본 국내외 4개사 7개 품목에 대해 총 20억엔(약 203억원)을 지원하겠다고 발표 ('20.06)
 - ※ 후생노동성 계획에 따르면 일본 내 임상시험 등 의약품 승인 절차 진행에 필요한 비용으로 각각 최대 6억 엔씩 지원
- AMED는 의료연구개발 촉진 계획을 기반으로 기초연구에서 중개·임상시험 까지 의학 분야 R&D통합을 위해 중개 및 임상연구 코어센터 프로젝트 추진
 - 코어센터 기능 수행을 위한 인프라 시설 개발, 인적자원 및 임상연구 네트워크 구축 및 중개임상연구와 연구자 주도 임상연구의 추진을 통한 기초연구 실용화 목표
 - 코어센터를 중심의 중앙 IRB서비스 제공을 위해 중앙 IRB표준 모델 수립 및 가이드라인 개발 사업 추진을 통해 중앙 IRB사용 장려 및 관련 법규 제정


1.3. 국내 정책 동향

가. 국가 상위 정책 기조


- (신속·과학 중심) 감염병 재난의 경제·사회적 피해를 예방하고, 안전한 국가 실현을 위해 새로운 팬데믹을 신속·과학적으로 대비하기 위한 국정과제 제시
 - (감염병 대응체계 고도화) 코로나19 현안 대응 부터 향후 미래 새로운 감염병에 대한 신속·효율적 대응을 위한 거버넌스, 위기 관리 체계 고도화 등을 추진
 - 코로나19의 재유행을 대비하기 위한 먹는 치료제 등의 충분한 확보 및 백신 추가 접종, 신·변종 감시 강화 등을 추진
 - (선진화된 재난안전 관리체계 구축) AI·데이터 기반으로 기후변화·신종 감염병 등 복잡·대형화 하는 재난에 신속·과학적 대응 강조
 - -분산된 재난 데이터의 통합 관리하는 플랫폼 구축, 빅데이터 분석 기반 재난 대비, 맞춤형 안전정보 제공 등 신기술 융합형 디지털 전환 추구
- (감염병 투자의 목적성 강화, 전주기 범위 확대) 국가 감염병 대응역량의 고도화를 목적으로 범정부 차원의 정책-혁신적 R&D 가 투자 연계성 강화
 - 과거 신종플루, MERS 그리고 코로나19를 겪으면서 감염병에 대한 현안대응 중심 에서 향후 미래에는 국가의 안전관리를 위한 사회 안전망 구축 및 목적성 투자 강화
 - 감염병에 대한 과학화 기반의 기술 대응력을 강화하기 위한 진단·치료·백신에 대한 R&D 및 기초·임상/중개, 방역 등 전주기 투자 확대

참고 감염병 관련 주요 정책-투자 방향 요약			
구분	관련 주요 내용		
2022년도 국가연구개발	장·단기 2-Track 투자 통해 중장기 대응역량 제고, 국민·현장수요		
투자방향 기준	기반 투자 및 투자범위 확대		
보건복지 R&D 중기투자전략(2021)	미래감염병 대응 기반 지속투자, 차세대 유망기술 투자확대 및 공익적 R&D 지원 강화		
감염병 연구개발 투자 고도화	감염병 위기 대응을 위한 과학기술 전방위 대응역량 강화, 장기적		
방안(2021)	관점에서 전략적 투자연구저변 확대		
K-글로벌 백신허브화 비전 및	국산 코로나19 백신 신속개발, 글로벌 생산협력 확대, 글로벌 백신		
전략('21.8.5)	허브 기반 신속 구축 등 3대 전략을 집중 추진		

자료 : 제3차 국가 감염병 위기대응 기술개발 추진전략(안)

- □ 「감염병 예방 및 관리에 관한 법률」에 따라, 연구개발 추진 및 신·변종 감염병 위기 대응을 위한 5년 단위 추진전략을 수립·추진
 - (추진방향) 포트폴리오 목적성 강화, 연구범위 확장, 융합연구 확대 추진 등 기존 투자 결과의 현장 이행력 부족 공백 제거를 위한 노력 추진
 - (관리체계) 감염병 R&D에 대한 표준분류체계를 수립하고 전주기 단계별 포트 폴리오 관리, 성과 점검 및 연계 활성화 추진
 - (추진체계) 감염병을 중심으로 관계부처 간 역할 분담, 유기적 연계 강화를 통한 R&D 관리 효율화 추진

|그림 Ⅱ-4 | 제3차 국가 감염병 위기대응 기술개발 전략 비전 쳬계도

|표 Ⅱ-11 | 제3차 추진전략 주요 내용

구분	번화 방향	세부 내용
추진방향	감염병 R&D 현안 대응·미래 대비 전주기 추진 강화	■ 포트폴리오 목적성 강화, 연구범위 확장, 융합연구 확대 추진 * 핵심기술 확보, 연구협력 생태계 강화, 미래 방역체계 구현 등 목적성 강화 * 의약품, 방역물품 생산·유통·분배 등 사용단계 안전관리 강화 * 디지털 전환, 비대면, 회복력 등 환경변화 반영한 기술개발 추진
관리체계	감염병 R&D 전주기 성과관리 강화	감염병 기술분류체계 기반 R&D 전주기 성과관리 추진 *[기획] 표준화된 감염병 기술분류체계 정립 및 포트폴리오 관리 *[관리] 범부처 사업 추진현황 및 성과 수집·관리 체계화 *[활용] 연구성과 이어달리기 및 연계·활용방안 구체화
추진체계	감염병 R&D 거버넌스 및 연계 강화	 감염병 특화 거버넌스 및 부처 연계강화로 R&D 관리 효율화 *제3차 추진전략 법적 근거 강화 및 총괄·조정체계 정립 *R&D 전략성 및 투자 효율성 제고를 위한 부처 역할분담 정립 *R&D 성과 적시확보·현장연계를 위한 전문 관리역량 함양

자료 : 제3차 국가 감염병 위기대응 기술개발 추진전략(안)

> 제3차 추진전략의 기초연구/치료제 관련 주요 내용

- (기반 측면) 감염병 R&D에 대한 표준기술분류체계 정립을 통한 포트폴리오 관리 및 시설·자원 등 감염병 R&D 인프라·인력 강화
 - 감염병 R&D 표준기술분류체계 정립 및 이를 통한 성과관리·모니터링 강화 추진
 - 시설·자원 등 감염병 R&D 강화를 위한 인프라를 확대 구축하고. 활용성 제고
 - 감염병 관련 전문 연구인력 교육·훈련 프로그램 다양화 등 전문 인력 양성
- □ (기술확보 측면) 미해결 감염병 치료제 개발 도전 및 신기술 기반의 감염병 위기 극복 핵심 치료 기술 조기 확보
 - 현안인 코로나19 치료제 개발 및 효능 평가뿐 아니라 새로운 치료제 후보물질· 타겟물질 발굴, 만성감염 완치제 개발 추진
 - 치료제의 조기 현장적용을 위한 신속 임상연구 지원 및 실용화 촉진
 - 감염병 발병, 병원성에 대한 심도 있는 기전연구를 통한 원천기술 확보
 - 바이러스 핵심 기초연구 및 연구협력, 연구시설의 공동 활용 활성화 추진
- (연구생태계 측면) 임상연구 지원 및 기반 강화, 원헬스 기반 인수공통 협력 연구 및 국제협력 강화
 - 치료제 및 백신 효능과 유효성 평가 등 임상연구지원을 강화
 - 동물 감염병에 대한 관리 고도화 및 다분야 간 내성균 전파 기전 및 감시·진단· 적정사용 연구를 통한 세균감염·항생제내성에 대한 관리기술을 확보
 - 선진기술의 국내 도입을 촉진하기 위한 국제협력 기반의 공동 연구개발 플랫폼을 구축하고, 글로벌 제약사 등 기존 협력 강화와 동시에 신규 네트워크 확대
- (미래 방역·대응 관점) ICT 기반의 디지털 기술 융합형 신속한 감시·예측· 진단기술의 고도화 추진
 - 인공지능·빅데이터 등 ICT 기반의 감염병 감시·예측 기술개발
 - 신기술 융합형 진단기술 고도화 및 진단기기 평가기술 확보 추진

> 제3차 추진전략의 감염병 분야별 기초연구 및 치료제 개발 방향

|표 Ⅱ-12|제3차 추진전략 주요 내용

								기술	중점 영역 및 감염병 구분	-						
구분	기술영역	기술 영역	신·변종 감염병	기술 영역	기후변화/인수공통	기술 영역	인플루엔자	기술 영역	세균감염	기술 영역	항생제내성	기술 영역	결핵	기술 영역	만성감염	
	특성분석	V		\ \	* 바이러스 생활사, 중식·전파 기전, 변이분석, 병인기전, 이상면역반응 등 기초원천연구	V		\ \ \		V				V		
	기전규명	V		V	* 동시감염에 의한 질환 중증도 변화 및 병인기전 연구 * 고령층 및 유아 대상 인플루엔자 면역연구	V	* 시스템 생물학 기반 선착성 면역반응 조절인자 발굴 및 동물모델 구축, 특성연구 * 바이러스 감염 선천 면역조절 억제제 및 조절물질 발굴	V	* 주요 세균별 임상역학/분자역학적 특성 분석 * 주요 세균감염의	V	* 실시간/단시간 현장분석 가능한 내성균 분석법 개발 * 항생제내성균 내성·감염기전 분석			V	* 만성감염 면역병인 기전연구	
기초/	동물모델 개발		* 코로나19 동물 감염 표본조사를 통한 인체 전파가능성 분석 * 코로나 계열 바이러스 역유전학 시스템 개발, 코로나 계열 바이러스 유전자 변이 분석		* 국내 병원성 미생물 자원 MALDI-TOF DB 생성 * 역유전학 연구방법 기반 기전연구	\ \							* 결핵군 및 비결핵항상군	\ \	* 만성감염 발병 및 질병 진전 기전연구 * 만성감염 내 복합감염의 면역병인기전연구	
기전	치료제 타겟 발굴			바이러스 역유전학 시스템 개발, 코로나 계열 바이러스 유전자 변이 분석		*시스템 바이올로지 기반 코로나 계열	V	* 바이러스 증식 및 억제 host 선천면역		병인기전 연구 * 감염질환 관련 마이크로바이오음 연구	\ \	* 항생제내성균 병인기전 예측 위한 장기모사칩 개발 * 신규 항생제 타겟발굴 기초연구		면역반응 기전 기반 결핵 사멸능 연구		* HBV 생활사 전주기 재현 가능한 세포배양 플랫폼 개발 상용화 * HBV, HCV 생활사
	백신 기초연구				유전적·표현형적	\	동시감염에 의한 병리기전연구								재현 동물모델 구축 및 감염 발생기전 조사연구	
	진단바이오마커				기반 SFTS, 큐열, 신종감염병 대상 원인체 특성, 숙주동물 발병기전 분석, 질병방어 기술개발 플랫폼 구축											

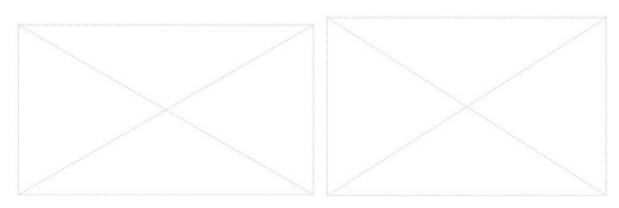
-7 H	7) 2 47 47		기술중점 영역 및 감염병 구분												
구분	기술영역	기술 영역	신·변종 감염병	기술 영역	기후변화/인수공통	기술 영역	인플루엔자	기술 영역	세균감염	기술 영역	항생제내성	기술 영역	결핵	기술 영역	만성감염
	병원균 검출	~			* 플라비바이러스 multiplex RT-PCR										
	바이오마커 개발		* 조기진단 알고리즘 개발 * 고감도 정밀 증폭 진단 위한 검체		기법 개발 * 진드기 매개 뇌염 진단기술 개선 및 개발 * nanoparticles 이용한 나노바이오센서 응용 인수공통 감염병				* 세균감염 숙주반응	\ \	* 항생제 내성균 감염의 바이오마커 개발		* 나노바이오센서 등 신기술을 활용한 신속진단 * 나노 복합구조체 및 면역형광 고효율 신호 증폭을 이용한		* 만성바이러스 조기 간편 스크리닝법
진단	진단검사법 개발	V	전처리 * 고해상도 이미지 기법 기반 병원체 검출 * 임상증상 유사 질환에 대한 유전자 다중검출 진단법, 혈청학적 진단법 개발	V	신속·현장적용 진단법 개발 * 재조합 변형 톡소이드 기술을 활용한 세균성 인수장목용 진단키트 개발		-		분석을 통한 진단법 개발 * 세균감염 진단을 위한 새로운 플랫폼 개발 * 세균감염의 분자영상 진단법 개발	\ \	* 항생제 내성균 감염의 새로운 분자진단법 개발 * 항생제 내성균 신속 검출·진단 기술 개발 * 숙주반응 분석을 이용한 진단법 개발	V	고감도 항원진단기술 개발 * 내성결핵 검출을 위한 분자진단법 개발 * 잠복결핵감염 진단 신기술 개발	\ \	개발 (산모, 신생아) * B형/C형간염, HIV/AIDS 약제내성 바이러스 진단법 구축 * nanoparticle, 형광,
	진단기기/시약 개발		* 자가진단/현장신속진 단/동시진단 기술 및 진단 솔루션 및 평가 플랫폼 개발	V	* NGS 포함 분자진단, 혈청학적 기법, 형태학적 진단, 원인 병원체 분리기술 등 진단용 항원단백질 ·평가플랫폼 개발 * SFTS 진단을 위한 sample—in, answer				* 세균감염의 point of care 진단법 개발		* 항생제 내성균 감염의 새로운 진단 플랫폼 개발	٧	* 효소활성 및 나노입자 기반 현장진단키트 개발 * 인공지능 기반 흉부 X-Ray 분석기술 개발		mass 증폭법 등을 활용한 HPV 진단법 구축
	효능평가			\ \	-out 형태 molecular POC 제품 개발										

— Ⅱ. IPK를 둘러싼 외부환경 분석

-, 12	12.4141							기술	중점 영역 및 감염병 구분						
구분		기술 영역		기술 영역	기후변화/인수공통	기술 영역	인플루엔자	기술 영역	세균감염	기술 영역	항생제내성	기술 영역	결핵	기술 영역	만성감염
	치료제 개발	V		\ \ \	* 내성 말라리아 약물 재창출 플랫폼 개발	V	* 약효 재조정(drug-reposit ion)을 통한 인플루엔자 대체	\ \ \	* 세균감염의 맞춤의료 기술·전략 개발	\ \	* 치료 타겟연구를 위한 선도물질 개발,	V	* 치료기간 단축 위한 약제 조합 기반	V	* 핫바이러스제 내성
	약물재배치/ 치료제병합		* 자임상1상 완료한 후보물질 다수 확보 * 유전자가위 CRIS -Cas9 기술 기반 단백질 구정보석 및	\ \	* 브루셀라, 큐열, 소결핵 특이항원, 바이오마커 발굴 및 진단기법 개발 * CRIS-Cas9 등 신기술 기반 신변종 병원체 세포 내	는 영화 등 전 보고		V	* 세균 내 항생제 유입기술 개발 * 세균감염의 immune-modulator 개발 * 세균감염의 phase-therapy 개발 * 세균감염의	\ \	변합요법 개발 * PK/PD를 활용한 항생제 요법 최적화 * 면역세포/박테리오파 지 이용한	V	지 고 급 기 년 치료법 개발 * 잠복결핵 치료기간 단축 및 다제내성 결핵 환자 접촉자의 잠복결핵감염 치료법 개발	\ \	만성바이러스 감염 치료법 개발 * B형간염, HIV/AIDS 완치제 개발을 위한 바이러스 및 숙주 신규라겍 확보, 후보물질 개발
치료	효능평가	V	치료제 타겟물질 발굴 * 식물유래 유전자재조합 기반 치료항체 개발 * 항바이러스 소재 효능 평가 및 검증체계 개발		단백질 스크리닝 및 저해물질 개발 * siRNA 기반 신변종 감염병 치료제 개발 * 말라리아 및 내성 말라리아 신약 개발		실용화 * 인플루엔자 등 국내 지속발생 질환의 신약 및 항체치료제					\ \	* GLP 수준 시험관내 감염동물을 이용한 치료제 후보물질의 유효성 평가 * GLP 수준 감염동물모델을		* B형간염 기존 항바이러스+신규치 료제 병용을 통한 치료제 효과향상 연구 * B형간염 만성화
	내성극복방안				* 산업/야생/반려동물 코로나19 치료제 안전성 및 효능평가, 사업화				therapeutic bacteria 개발 * 세균감염의 기타 생물학적 제제 개발		면역조절제 개발 * 감염 제어를 위한 병인차단제 개		이용한 면역치료제 및 예방백신 후보물질의 유효성 평가		원인 항원제거를 위한 RNAi 치료법 개발

자료 : 제3차 국가 감염병 위기대응 기술개발 추진전략(안)

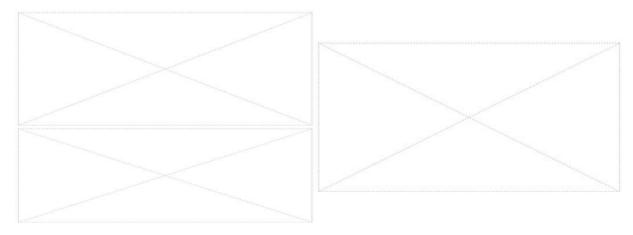
- (감염병 중심의 국가 연구기관 확대) 감염병 관련 정책, 투자 방향을 기획하고,전주기 연구성과 촉진 및 효율적 관리를 위한 국가 주도의 연구기관 확대
 - 코로나19 이후 감염병 대응역량 강화를 위해 국립감염병연구소*('20.9월) 및 한국 바이러스기초연구소 설립('21.7월)
 - * 국가 감염병 연구개발 정책, 부처별 추진방향 기획 및 연구개발 전주기 성과관리 등 국가 차원의 목적기반 총괄 주도 역할 수행
 - 최근 국립감염병연구소는 조직개편을 통해 동물실험 및 임상 단계까지 포함한 전주기 영역으로 연구개발 확대하고, 출연자금 지원 권한을 확보
 - 연구소 내 신종바이러스연구센터에서 핵심적으로 코로나19 등 신·변종, 결핵·에이즈 등 급·만성 바이러스성 감염병 진단·치료제·제어기술 개발을 담당
 - ※ 국립감염병 연구소 내 신종바이러스연구센터는 신·변종 및 급·만성 바이러스성 감염병에 진단· 치료·제어 기술개발을 목표로, 관련 핵심기술 개발 및 후보물질 발굴 연계 지원


<u> </u>										
참고	참고 국립감염병연구소 신종바이러스연구센터 중점 분야									
[후보물질 확보부터 임상중개 연계 강화]										
	As-is	To-be								
[신·변종] 코로나19, MERS, 에볼라/니파/라싸 등 고위험 바이러스 대상질환 [급성] 인플루엔자, RSV, 모기매개(지카/뎅기/일본뇌염), SFTS, 노로 [만성] HIV/AIDS, B/C형 간염, HPV										

[신종바이러스연구센터 부서별 중점분야]

부서명	부서별 중점 분야						
17 J.J.	코로나19	치료 후보물질 확보 및 (전)임상 지원					
신종바이러스 매개체연구과	메르스	광범위 치료면역 후보물질 확보 및 전임상 지원					
게게세 한 1 위	고위험출혈열	니파, 라싸 등 유입대비 대응 플랫폼 구축					
7 10 10 1	인플루엔자, RSV	호흡기·인플루엔자 범용면역물질 및 치료항체 플랫폼 구축					
급성바이러스 연구과	SFTS 등	SFTS 치료제 플랫폼, 플라비바이러스 범용 치료후보물질					
٠١٣	오가노이드기반	오가노이드기반 감염모델, 유효물질 발굴, 독성평가 시스템					
	에이즈	완치제 선도물질 개발 및 전임상 단계 검증, 임상 연계					
만성바이러스 연구과	B형 간염	완치제 및 新치료제 플랫폼 개발					
٠١٣	C형 간염	간질환v 악화 제어 치료제 및 플랫폼 개발					
-1 -7 41 11	임상시험	치료제 임상시험 기획·지원					
치료임상 연구과	효능평가	치료제 효능평가 및 지원(GCLP 등)					
U 47	역학연구	바이러스성 감염질환 코호트 운영 및 중개연구					

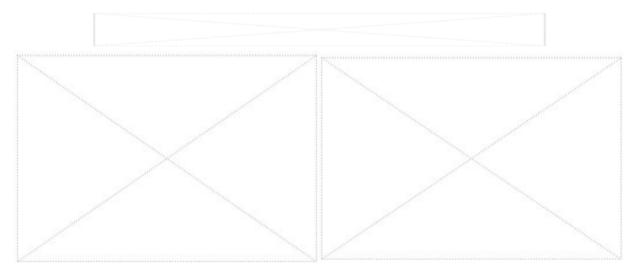
다. 제3차 생명공학육성기본계획(바이오경제 혁신전략 2025)('17-'26)


- 과학기술기본계획에 대응하여 관계부처의 세부계획을 종합·체계화하여 생명 공학분야를 육성·발전시키기 위한 생명공학 분야 R&D의 최상위 법정계획
 - 생명공학분야를 육성·발전시키기 위한 국가 차원의 비전과 정책 지침 제시하여 "바이오에 특화된, 그리고 R&D와 혁신에 기반한 산업육성책" 추진
 - 바이오 R&D에서 혁신적 원천연구의 중요성·장기적인 R&D 투자의 필요성이 증대되고, 저성장·노령화·감염병·식량안보·기후변화 등 경제·사회문제 해결에 바이오 R&D의 역할에 대한 요구 증대
 - (바이오 R&D 혁신) "글로벌 최초 기술" 개발을 위해 글로벌 선도 창의·도적적 연구를 촉진하고, 디지털 헬스케어, 바이오 연구산업 등 바이오 융합분야 신산업 육성을 위한 기반 구축
 - -미래유망 분야의 원천기술을 확보 및 글로벌 리더 과학자를 육성하기 위한 "혁신적 연구"를 추진하고 기초 원천 연구와 기업의 수요가 연계될 수 있도록 전주기 관점에서 전략적 R&D 연결고리 제공
 - ※ (Korea Bio Grand Challenge) 합성생물학, 마이크로바이옴, 유전자교정 등 경쟁형 한우물연구
 - ※ 대학 연구소 중심 기초 원천 연구(과기정통부) → 민관협업을 통한 기업수요 기반 연구(타부처)
 - 바이오신약 등 혁신 후보물질 발굴, 신약 메가펀드 구축, 글로벌 임상 및 해외 판매·마케팅 추진으로 "국산 블록버스터 신약" 창출
 - (바이오경제(Discovery to Market) 창출) 바이오 연구개발의 성과를 경제 효과로 연결, 과학기술 기반의 미래 일자리 산업 창출
 - 민관협업 R&D 및 인센티브 확대, 신약메가펀드(1조 규모) 마련 등 민간 참여 확대하여 "시장 수요 기반 R&D·사업화 촉진"
 - (국가생태계 기반 조성) 민간 주도 바이오경제 구현의 마중물이 될 "국가 혁신 인프라" 조성
 - 바이오 전 분야에 적용가능하고 태동기 시장이 유망한 기술의 개발·활용 법적 근거 마련하여 "합성생물학, 유전자교정, 유전자분석"지원 확대

|그림 Ⅱ-5 | 제3차 생명공학육성기본계획 비전체계도

라. 제2차 제약산업육성·지원 5개년 종합계획('18-'22)

- 법적 근거 기반의 「제약산업 육성 및 지원에 관한 특별법*」을 제정하여 제약산업 전략적 육성·지원을 위해 5년마다 종합계획 수립
 - * 「제약산업 육성 및 지원에 관한 특별법(제약산업법)」제정('11.3월)·시행('12.3월)
 - ※ 제1차 제약산업 육성·지원 5개년 종합계획('13~'17), 제2차 제약산업 육성·지원 5개년 종합계획('18~'22), 제3차 제약산업 육성·지원 5개년 종합계획('23~'27)_기획 중
 - 국내 제약산업의 현주소 진단 및 제4차 산업혁명, 첨단 바이오의약품 시장 성장 등 대내외 환경변화에 부응하는 중장기 발전전략 수립
 - -국민에게 건강과 일자리를 드리는 제약 강국으로 도약의 비전 아래 4대 목표 12대 추진 전략을 마련


|그림 Ⅱ-6 | 제2차 제약산업육성·지원 5개년 종합계획 비전체계도

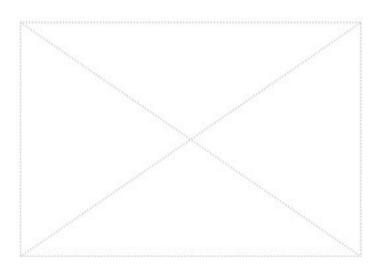
▶ 제2차 제약산업육성·지원 5개년 종합계획의 기초연구/치료제 관련 주요 내용 │

- (R&D 강화) 4차 산업혁명을 주도하는 차세대 미래 유망 분야 육성 및 신약 개발 성공률 제고를 위한 R&D 투자 추진
 - 세포치료제, 유전자치료제, 정밀의료 기반 치료제 등 첨단 바이오의약품 개발 및 인공지능을 활용한 신약 R&D 지원
 - 대학·연구소 등에서 보유한 신약 후보물질과 제약기업 간 연계·협력 시스템 구축 으로 신약 연구개발 생태계 조성
 - 주요 감염병을 감시·역학, 임상·정책, 기초·기전, 진단기술, 치료제, 백신, 인프라 등 핵심 분야별로 구분하여, 종합적인 대응 기술개발을 추진
- (인력양성) 양질의 생산·연구개발 인력 확충, 제약산업 상용화·제품화 전문 인력 양성 등을 통한 제약 산업 성장 동력 확보
 - 임상 적용이 가능한 신기술 개발 및 중개임상 연구를 주관할 인재양성을 위해 중개·임상연구 인력 양성 및 신약 연구역량이 우수한 젊은 의과학자 양성 지원
 - 임상시험·연구를 주도할 미래형 인재 양성을 위해 임상약리전문의, 제약·바이오 산업전문 약사 양성 검토
- (제도개선) 제약산업의 지속 성장을 위한 민간 투자 및 신약 개발 활성화 등을 통한 제약산업 육성 기반 조성
 - 신약 후보물질 발굴, 임상시험 수행 등 연구개발비에 대한 세약 공제 추가 확대 하고 혁신형 개량 신약 등 연구개발 유도를 위한 세제 지원 내실화
 - 임상시험 대상자 모집 포탈을 구축하여 임상시험 진행 정보 접근성을 제고하여 신속한 임상시험 수행 지원
 - 일정한 요건을 갖출 경우 식약처 승인 등의 절차 없이 IRB 통과 후 임상시험 수행이 가능한 범위를 확대하고 임상시험 수행 허용 범위 확대 검토
 - 동물모델·평가기법 구축, 안전성·유효성 평가기술 확보 등 플랫폼 기술 개발 및 민간 CRO로의 기술 이전 지원
 - 비임상·임상시험 수행 지원을 통한 국내 CRO 산업 고도화

마. 제1차 의약품안전관리종합계획('20-'24)

- 의약품 안전 관련 정책을 종합·조정하는 범정부 차원의 종합계획으로 사회· 기술 변화를 고려한 중·장기적인 안전관리체계를 구축하고 정책 실효성을 제고 하기 위해 계획을 수립
 - 의약품 안전 정책에 대한 연차별 시행계획을 추진하는데 기초가 되는 가이드 라인의 성격으로 국내외 여건을 반영한 실질적 종합계획

| 그림 Ⅱ-7 | 제1차 의약품안전관리종합계획('20-'24년) 추진뱡향 및 전략

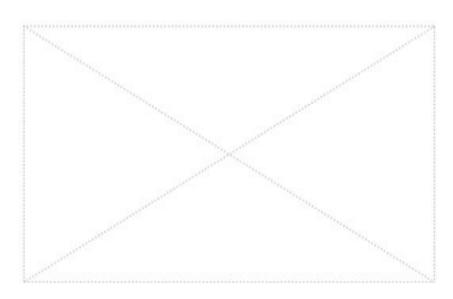

> 제1차 의약품안전관리종합계획의 기초연구/치료제 관련 주요 내용

- (생태계 조성) 융복합, 첨단바이오 등 혁신신약의 개발 및 제품화 인프라 구축을 통한 첨단기반 혁신신약 개발 생태계 조성
 - 혁신기술(조직·장기칩, 가상 장기모델 등) 기반 평가기술 개발 및 세포치료제 품질 평가항목 및 평가방법 개발 연구 등 추진
 - 생명 공학기술의 발달에 따라 세포 치료제, 유전자 피료제, 조직 공학제제 등 첨단 바이오의약품 연구·개발 및 제품 허가를 위한 제도 개선
 - 첨단 바이오의약품 특성을 고려한 허가·심사쳬계 및 신속 허가 절차를 마련하고 세포 치료제 품질 평가 항목 및 평가 방법 연구개발

- (임상시험 관리체계) 임상시험 및 시험대상자 보호를 위한 제도적 기반을 확충하고, 임상시험 검체분석기관 품질역량 강화 추진
 - 임상시험 품질 및 윤리성 강화를 위한 임상시험 및 대상자 보호프로그램(HRPP*) 도입·운영 확대 지원하고 임상시험용의약품 안전성 정보 관리 체계 선진화및 임상시험 검체분석기관 품질 역량 강화
 - * HRPP(Human Research Product Program) : 임상시험 실시기관이 임상시험의 품질향상 및 윤리 강화를 위해 운영하는 종합적이고 포괄적인 정책 및 활동
- 🔲 (산업 혁신) 글로벌 수준의 규제 선진화로 의약품 혁신성장 기반 강화
 - (특허 지원) 국내 제야기업의 제네릭 출시 활성화 등을 위한 허가특허 지원을 통한 국내 의약품 개발 역량 강화
 - (비임상시험 관리 내실화) 경제협력개발기구(OECD) GLP 현장평가 대응을 통한 상호인정을 유지하고 국내 GLP 선진화를 위한 기술 지원 실시
 - 이를 위한 비임상 조사관 역량 강화 및 전문 인력 양성 추진

바. 바이오헬스 연구개발 투자전략 Ⅱ('21)

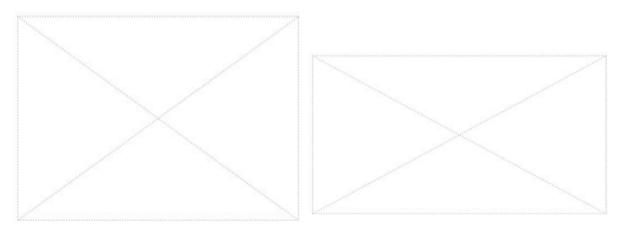
- 바이오헬스 연구개발 투자의 전략성 강화를 위해 범부처 차원의 전략을 수립하기 위해 '21년 바이오헬스 연구개발 투자전략 Ⅱ 마련
 - (기본 방향 1) 새로운 법·제도 기반의 정책 등 범부처 차원의 바이오헬스 연구· 산업 지워 정책과 연계한 투자 전략 수립으로 정책과 투자의 연결성 제고
 - (기본 방향 2) 연구·산업 현장의 수요를 기반으로 유망 기술수요와 투자 공백 분야를 발굴하고 중장기 연구개발 지원 강화
 - (기본 방향 3) 기초 단계의 성과발굴로 기초·응용·개발 단계의 연결고리를 강화하고 전주기적 연구개발읠 지원, 산업화 촉진
 - (기술분야) '19년 수립된 바이오헬스 연구개발 투자전략 I 에서 수립한 기존 7개 기술 분야를 바이오헬스 정책과 연계한 10개 분야*로 재분류하고 의약품 등 4개 분야 투자 전략 우선 마련
 - * 원천·기반연구, 바이오융복합, 의약품, 의료기기, 첨단재생의료, 헬스케어인프라, 임상·보건, 산업혁신·규제과학, 전문인력양성, 생명자원·정보인프라



| 그림 II-8 | 바이오헬스 분야 분류체계 조정($^{'}19.12/$ 바이오헬스 연구개발 투자전략 I)

바이오헬스 연구개발 투자전략의 기초연구/치료제 관련 주요 내용

- (원천·기반 연구) 생명현상연구, 질환극복연구, 바이오 신기술 등 기초 연구 성 과를 고도화하고, 질병 기전 규명하는 등 기초·연계 연구 강화
 - 논문, 특허 등 기초연구 성과를 바이오헬스분야에 활용한 원천기술로 고도화 할 수 있는 연계연구 지원 강화
 - 질병 기전 규명 및 질환 극복을 위한 신규 타깃 발굴 지원 확대
- (바이오융복합) 의약품, 의료기기, 헬스케어서비스 등의 분야에 첨단기술과의 연계를 위한 원천 R&D 투자 확대
 - 인공지능 등 첨단 기술과의 융합을 통한 신약개발 효율화 및 약물 전달기술 개선 등 차세대 의약품 개발 원천 R&D 투자 확대
- (의약품) 후보물질 도출, 의약품 개발을 위한 중장기적 역량을 집중하고, 개발 촉진을 위한 공통기반 플랫폼 구축 등 지원
 - 신규 핵심타깃 검증과 초기 파이프라인 발굴에 역량 집중
 - 차세대 첨단 의약품 원천기술 등 혁신 기술 개발을 지원하고 후보 물질 발굴부터 사업화까지 전주기 역량 강화를 위한 중장기 지원
 - 새롭게 떠오르는 치료제 분야에 대한 평가 기술 개발 및 신약 개발 촉진을 위한 공통 기반(AI 등) 플랫폼 구축을 지원


- (첨단재생의료) 차세대 재생의료 분야의 원천기술 확보 및 중개연구, 임상연구 등을 지원하고, 재생의료 인프라 강화
 - 범용성 줄기세포 등 차세대 재생의료 분야의 원천기술 확보 및 원천 연구 성과의 치료제 확보 기술 전환을 위한 중개 연구 지속 지원
 - 유전자 편집기술 적용 등 재생의료 치료제 기능성 강화 및 치료제 파이프라인 다양화를 위한 연구개발 중장기 지원 강화
 - 줄기세포·오가노이드 기반 질환모델링 등 재생의료 유래 기술의 산업 활용도 제고 및 재생의료 전·후방 산업 연계 기술 상용화 지원 R&D 발굴
- (임상·보건) 공익적 중개·임상연구, 질환대응 연구 등 감염병 기초·기반 연구개발투자 지속
 - 기초 연구 성과의 임상·실용화 연계 강화를 위한 생활환경·습관 기인질환, 정신 질환, 희귀질환 등 공익적 중개연구 지속 지원
 - RWE(실제임상근거) 생산·활용 연구기반 조성 및 새로운 치료법의 임상적용을 촉진할 근거 마련 위한 공익적 임상연구* 지원 강화
 - 예측 모델링 개발, 신개념 진단·치료·백신 핵심 플랫폼 기술 확보 및 다양한 병원체 기전연구 등 감염병 기초·기반 연구개발 지속 투자

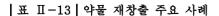
|그림 Ⅱ-9 | 바이오헬스 분야 분야별 체계도

사. 제2차 보건의료기술육성기본계획('18~'22)

- 국가적 보건의료 문제 해결에 집중하고, 산·학·연·병의 창의성과 다양성을 뒷받침할 수 있는 R&D 시스템 혁신의 지속적인 추진을 위한 기본계획
 - 국민의 더 건강한 삶, 지속가능한 의료시스템 구축 및 미래형 신산업 육성을 위한 국가 차원의 전략로드맵 제시
 - 고령화, 감염병 등 고비용 보건의료문제에 국가적 대응, 더 건강한 삶과 의료의 지속가능성 확보를 위한 대안 창출
 - -기술혁신의 가속화로 새로운 진단·치료가능성 및 의료시스템과의 연구개발 효율성 증대를 기대
 - '보건의료기술혁신으로 국민 모두가 건강한 내일'이라는 비전 하에 전략 방향을 수립하고 전략 방향을 달성하기 위한 3개의 전략과 9개의 중점과제 도출
 - -(전략방향①) 국민의 삶과 의료현장의 니즈(needs)를 해결하는 R&D
 - ※ 환자, 국민의 건강문제 해결에 직접적으로 적용되는 R&D를 강화하여 국민 생활 속의 체감도 향상
 - -(전략방향②) 연구의 연결·융합을 촉진하는 R&D 지원시스템 구축
 - ※ 관리(management) 중심에서 연구의 자율성과 창의성을 극대화할 수 있는 R&D 촉진시스템 으로 전환
 - -(전략방향③) R&D 성과의 가치창출 확대를 통한 미래 성장동력 확보
 - ※ 미래 신산업 분야에 대한 R&D 투자의 선택과 집중, R&D 성과와 사업화의 연결고리 강화

|그림 Ⅱ-10 | 제2차 보건의료기술육성기본계획 비전체계도

제2차 보건의료기술육성기본계획의 기초연구/치료제 관련 주요 내용

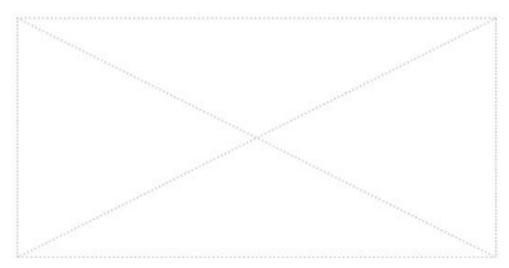

- (R&D) 희귀질환 의료기술 개발, 정밀 의료 등 기술개발, 첨단 바이오재생의료 자워 지워 등 치료제 개발 활성화를 위한 지워 확대
 - 희귀질환 의료기술 개발 촉진·임상서비스 확대, 임상-연구 연계 통합 DB 구축, 임상 시험비 지원 프로그램 신설 등 인센티브 도입
 - 맞춤형 항악제 개발 등 유전체 정보를 기반으로한 정밀의료 기술 개발 지원
 - 재생의료 융·복합 분야*의 연구지원 확대를 통해 혁신성을 갖춘 다양한 제품군의 중개·임상연구 진입 유도
 - * 암 표적피료 면역세포(예: CAR-T 세포)이용 항암제, 유전자가위기술 활용세포치료제, 3D 프린팅을 활용한 환자맞춤형 장기 개발·임상 적용 등
 - 공동기반기술* 개발 지원을 통한 상용화 선순환 체계 구축
 - * 안전성·유효성 평가기술, 대량배양기술, 이식기술, 모니터링 기술 등
- (융복합 기술) 인공지능 활용 신약 개발, 유전자 가위 기술 촉진 등으로 글로벌 신약 개발의 경쟁력 강화
 - 인공지능(AI), 임상개발 컨설팅 등 혁신기술과 경험을 활용하여 신약개발기간 단축
 및 효율성 제고
 - 유전자 가위기술 연구 촉진 및 사회적 합의를 통한 법·제도규율방안 및 현장 적용을 위한 가이드라인 마련
 - 유전가 가위 원천기술 확보 및 희귀·난치성 질환 치료분야 응용기술 개발을 위한 투자 확대 검토
- (성과 연계) 개방·연결·융합을 위한 R&D 지원체계 조정 등 혁신 시스템 구축
 - 후속 연구로 성과가 이어지도록 평가체계를 고도화하고, 우수 연구성과 발굴 및 연계 지원체계 구축
 - 다수 부처의 신약 개발 지원 사업을 단순화·통합하여 중복투자 방지 및 단절 없는 전주기(기초 → 임상 → 인허가·사업화) 지원

2. 연구개발 동향

2.1. 치료제 기술 관점별 동향

가. 약물재창출 분야

- (개념) 임상실험에서 효능 입증이 안된 약물을 새로운 적응증으로 재탐색, 초기 신약 개발이나 안전성 확보 등에 필요한 시간 등 개발 기간 단축 가능
 - 약물 재창출은 이미 시판 중이거나 임상단계에서 상업화에 실패한 약물을 대상 으로 새로운 적응증을 규명해 신약으로 개발하는 방법
 - ※ 예시) 렘데시비르는 당초 에볼라 출혈열과 마버그 바이러스 치료를 위한 약제로 개발됐지만 이후 여러 실험에서 단일 RNA 바이러스의 항바이러스 효과를 발휘
 - 후보물질을 발굴하기 위한 스크리닝 과정이 생략, 빠른 임상연구결과를 통해 적시 개발과. 기존 신약 개발 대비 상대적으로 적은 비용으로 개발이 가능한 장점
 - 약물독성검사에서 안전성이 검증됐고 임상 승인에 필요한 독성자료도 갖고 있어 새로운 적응증에서 효과를 보이는 용량을 확인하는 임상 2상부터 시작
- (동향) 최근 딥러닝기술, 데이터베이스 분석 기술 등 AI기반 약물 평가기술의 적용으로 후보 약물에 대한 약물 성능 분석 신속화 가능
 - 최근 AI 기술을 약물재창출 과정에 접목함으로써 약물의 표적 및 작용기전, 약물-표적간, 약물-약물간 상호작용 등 후보약물 성능을 빠르게 분석
 - AtomWise (미국) 24시간 만에 7,000종의 약물재창출 후보를 분석하여 에볼라 치료제 후보물질 발굴 성공
 - Benevolent (영국) 류마티스 관절염 치료제 '바리시티닙'의 코로나19 치료 효과 예측, 임상검증('21.7월 FDA 승인)
 - AI를 활용한 신약개발 시장은 '19년 473.4백만 달러에서 연평균 28.63% 성장 하여 '27년 3,548.6백만 달러 규모에 달할 것으로 전망
 - 최근 글로벌 IT기업(구글, 아마존, 마이크로소프트)은 신약개발 사업을 시작하고 인공지능 활용 신약개발 전문기업과 국제제약사 협업 또한 증가 추세

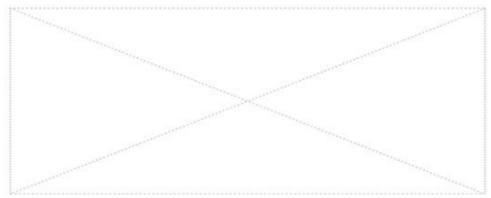

약물명	당초 개발 방향	변경된 개발 방향	주요 내용				
렘데시비르	에볼라 출혈열, 마버그열 치료제	코로나19 치료제	 단일 RNA 바이러스 항바이러효과 확인 코로나바이러스 계열 질환 효과 확인 				
실데나필	고혈압·협심증 치료제	발기부전 치료제	 임상 2상서 고혈압·협심증 효능 입증 실패 용량증량 임상 1상서 발기부전 치료 효과 발견 				
미녹시딜	궤양 치료제, 고혈압치료제	탈모 치료제	 동물실험에서 궤양 치료 효과 입증 실패 강력한 혈관확장 효과 발견→고혈압 치료제 개발 도전→발모 부작용 발견→탈모 치료제 개발 				
둘록세틴	항우울제	복압성 요실금 치료제	 세로토닌, 노르에피네프린 재흡수 막아 음부신경 활동 촉진 복압 요실금 치료 효과 발견 				
카나키누맙	류마티스 관절염 치료제	머클-웰스 증후군 치료제	 임상 2상에서 류마티스 관절염 효과 입증 실패 머클-웰스 증후군 환자 IL-1 다량분비 확인후 방향 전환 				

자료 : 새 적응증 찾아라...코로나19로 '약물 재창출' 주목, [MEDICAL Observer, 2020.03]

나. 항바이러스제 분야

- (개념) 인체에 침입한 바이러스의 작용을 약화·소멸시킴으로써 바이러스에 의한 감염질환을 치료하는 방법으로 변이 바이러스에 약한 것이 단점
 - 화합물 기반 항바이러스제제는 주로 바이러스 감염 사이클(Viral cycle)을 방해 하여 바이러스 증가를 억제하는 기작으로 작용
 - (바이러스 부착 및 침투 억제제) 바이러스의 표면에 있는 특정 단백질이 특이적인 상호작용을 통해 숙주세포 표면의 특정 분자에 부착하여 증식 초기 단계를 저해
 - ※ 에이즈 치료제 중 융합 억제제, CCR5 억제제로 분류된 약물 등
 - (바이러스 증식 저해제) 바이러스 증식에 필요한 여러 종류의 효소들의 생성을 저해하여 항바이러스 작용
 - ※ 오직 복제하는 바이러스에만 효과적이고 휴지기의 바이러스에는 효과가 없고, 질환에 따라 바이러스의 내성 발현을 방지하기 위해 두 가지 이상 약물의 병용 요법이 필수인 경우가 있음

- (동향) 수십만종의 저분자화합물 내에서 유효 화합물을 신속하게 스크리닝 하는 초고속대용량 스크리닝(HTS) 기반의 저분자 화합물 항바이러스제 개발
 - HTS 기술을 이용하여 짧은 시간에 수백만의 화합물 스캔이 가능, HTS로 수만개의 잠재적 신약화합물이 천개 이하의 유효물질로 스크리닝
 - 단일 클론 항체(mAbs)생산, 저분자화합물 스크리닝에 용이
 - 주로 B/C형 가염 완치제후보 타겟 스크리닝. 고위험 출혈열 등의 치료제 개발에 활용


자료: YoutubeChannel Erik V, 「High-throughput screening of 3D cellular models」

|그림 Ⅱ-11 | 초고속대용량스크리닝(HTS) 관련 이미지

다. 항체치료제 분야

- (개념) 바이러스 항원과 결합하여 항원의 작용을 방해하거나 항원을 제거하는 항체(antibody) 단백질의 면역 기전을 활용하여 감염질환 치료
 - 면역세포 신호 전달 체계에 관여하는 단백질 항원이나 병원체 표면 표지인자를 표적으로 하는 단클론항체(mAb)가 표적 바이러스에 결합하여 항원 작용 무력화
 - 바이러스 표면에 부착된 항체치료제로 인해 바이러스 제거 및 T세포 면역반응 등 다양한 면역방응의 유도 가능
 - 항체치료제는 특정 병원체를 가장 효과적으로 무력화하는 항체로 치료제를 개발 하고, 외부에 미리 만들어 둔 뒤 감염 시 체내에 주입하여 치료에 활용

● 사스코로나바이러스-2 표면의 스파이크단백질에 결합하는 항체 개발, 10개 이상 임상 중 - 세포 표면에 존재하는 ACE2 수용체가 스파이크단백질과 결합하는 것을 제어

자료 : 기초과학연구원

| 그림 Ⅱ-12 | SARS-CoV 사례로 본 항체치료제 개념

- (동향) 인체 유래 B세포 기술, 변이 대응성을 가진 칵테일형 항체치료제, 개발과 함께 항체의존면역증강 문제와 같은 한계 극복을 위한 연구 추진
 - (인체 유래 단일 B세포 기술) 초혈액단핵세포(PBMC)나 골수 유래의 B세포로부터 FACS를 활용하여 질병유발 항원에 결합하는 단일 B세포를 분리, 매우 신속하고 효율적으로 항체치료제를 개발
 - (칵테일형 항체치료제) 단일클론항체의 약한 변이 대응성을 극복하기 위해 하나의 항체만을 사용하기보다 바이러스 스파이크단백질의 다른 부위를 인지하는 여러개의 중화항체를 혼합하여 칵테일 형태로 항체치료제를 개발
 - 한 가지 항원의 특정한 위치(Epitope)에만 강하게 결합하는 단일클론항체는 결합부위에 돌연변이가 생기면 결합력이 떨어지고 중화항체 효과 감소
 - ※ (Baum et al., 2020) 칵테일 치료법이 중화력도 높으며, 회피돌연변이 바이러스(escape mutant)가 생기는 확률도 감소
 - (항체의존면역증강 문제) 중화항체가 면역세포의 Fc 수용체와 결합하여 오히려 바이러스 감염을 돕는 현상으로 저농도의 면역혈청이나 항체와 바이러스의 어설픈 결합 등으로 인해 발생
 - ※ 댕기, RSV, 인플루엔자, SARS의 경우 이러한 항체의존면역증강 사례 보고
 - 감염 조직에 약물이 잘 전달될 수 있도록 하는 것과 면역세포를 활성화할 수 있는 실행기(effector)의 기능 강화, 체내 반감기 증가 등을 고려할 필요

라. 그 외 바이오 인포매틱스 융합 및 신규 모달리티 기술

> 바이오인포매틱스 기반 연구 주목

- (바이오인포매틱스) 최근 감염병 치료제 개발에 있어서 생물정보학(Bioinformatics) 기반으로 항생제 내성을 비롯한 원헬스 관련 감염병(인수공통, 인플루엔자 등) 연구가 활발히 진행
 - 생물학(Biology)와 정보학(Informatics)의 두 분야를 융합하여 신종플루, 코로나19 같은 감염병 변이바이러스 분석에 용이
 - 감염병 연구를 위한 생물정보학자는 첫 번째로 수많은 양의 데이터를 효과적으로 다뤄야 하며, 두 번째 확보된 데이터로 숨겨진 바이러스 특성을 신속히 파악하는 것이 중요

참고 생물정보학(Bioinfomatics)를 활용한 MERS 계통수 분석 연구 사례

주요 내용

- MERS-CoV의 S단백질과 131개 Reference MERS-CoV의 S단백질 유전자 서열을 이용하여 계통수 분석 연구를 시행
- 분석결과, 8개 균주의 S단백질 서열은 2015년 사우디아라 비아에서 분리된 MERS- CoVS단백질과 99.68~99.9%로 높은 동질성을 보임

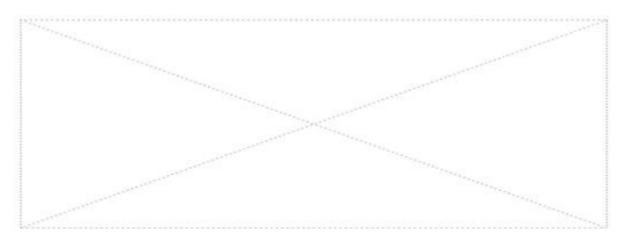
> 신규 모달리티의 성과 증가

- (세포치료제) 세포치료제는 자가, 동종, 이종세포를 체외에서 증식·변화 시켜 치료 목적으로 만든 의약품으로 최근 난치병 분야 치료 효과를 보여 관심과 연구 활발5)
 - 세포의 조직과 기능을 복원시키기 위하여 살아있는 자가, 동종, 이종 세포를 체외에서 증식·선별하거나 여타한 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통해 치료, 진단 및 예방의 목적으로 사용되는 의약품
 - 1세대 재조합 단백질 의약품, 2세대 항체 의약품과 전혀 다른 기술 기반을 요구 하며, 과거 상용화가 빠르지 않았으나 난치성 질병 분야에서의 효과성을 나타내며 최근 전 세계적으로 제약·바이오 기업들이 주목하는 기술

⁵⁾ 진화하는 '세포치료제' JW가 앞장서다, [JW R&D] 내용을 기반으로 정리

- 최근 나노소재기술과의 접목으로 특정면역세포 표적 물질(백신, 저분자물질, 단일 또는 이중항체 등)전달기술 및 면역세포 조절 생리활성물질의 전달기술의 개발이 활발
- 기술 자체가 의약품이 될 수 있어 상품화 기간이 짧고 R&D 비용이 비교적 낮아 향후 5년 내 차세대 치료제 시장을 주도할 것으로 전망
 - ※ 전 세계적으로 고형암표적 CAR-T 치료제 임상시험은 198개가 실시, 연구영역도 확장 추세
- (세포치료제 종류) 대표적인 세포치료제로는 CAR-T가 있으며, 최근 차세대 세포 치료제로서 CAR-NK, CAR-M이 주목
 - -(CAR-T) 대표적인 세포치료제로 환자 자신의 면역세포인 T세포에 암세포를 항원으로 인식하는 수용체 유전차(CAR, 키메릭 항원 수용체)를 도입하여 암세포를 공격하도록 만든 치료제
 - -(CAR-NK) T세포의 대량생산 제약의 한계를 극복하기 위해 등장한 차세대 세포치료제로 건강한 사람의 혈액 속 NK(Natural Killer) 세포를 유전자 조작을 통해 화자에게 투여하는 형태의 치료제
 - -(CAR-M) 대식세포(macrophage)에 CAR 유전자를 적용해 정상세포에는 영향을 주지 않고 암세포 특이적 살상력을 극대화한 차세대 면역항암제로, 고형암에서 우수한 효능이 기대되며, CAR-NK와 같이 동종치료제로 대량생산 가능

|표 Ⅱ-14 | 약물 재창출 주요 사례


구분	CAR-T	CAR-NK	CAR-M		
세포기원	자가유래 치료제	동종유래 치료제	동종유래 치료제		
세포기천	환자 혈액에서 추출	일반인 혈액에서 추출	일반인 혈액에서 추출		
세포기반	T세포	NK세포	대식세포 (macrophage)		
사이토카인 방출 증후근 부작용	75~100% 환자에게서 발생	발생 우려가 적음	발생 우려가 적음		
생산비용	고가 (환자 맞춤형 치료제)	상대적 저가 (Off-the-shelf, 기성품)	상대적 저가 (Off-the-shelf, 기성품)		
주요 적응증	혈액암	혈액암, 고형암	고형암		

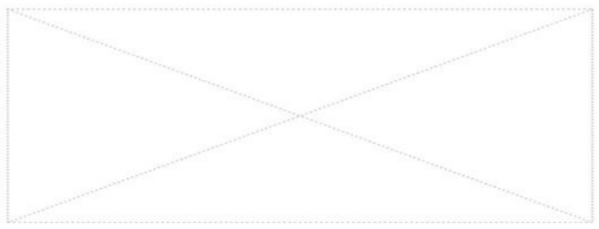
자료 : JW 중외제약

| 표 Ⅱ-15 | 국내·외 세포치료제 주요 플레이어

해외	국내
 미국, 노바티스(Novartis), 카이트파마(Kite Pharma): CAR-T 페이트테라퓨틱스(Fate Therapeutics): CAR-NK 펜실베니아의대Carl June 국립보건원(NCI) Steven Rosenberg 	 GC녹십자셀, 큐로셀: CAR-T JW 크레아젠: 수지상세포 백신 제넥신: 항암면역세포 활성증진제

- □ (마이크로바이옴) 몸속 미생물을 활용해 다양한 질환을 치료하는 마이크로바이옴기반 치료제는 난치성 및 희귀 질환 치료제 개발의 핵심 솔루션으로 부상
 - 휴먼마이크로바이옴 분야는 차세대염기서열분석(NGS)기술, 빅데이터 기술발달로 유전체 해독 속도가 빨라지고 비용이 낮아짐에 따라 급속히 발전하고 있는 이머징 분야
 ※ 감염, 대사, 면역, 암, 정신, 피부질환 등 건강 관련 모든 질병이 대상

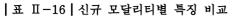
자료 : KPMG 경제연구원, 2020년 Issue Monitor 제 120호


| 그림 Ⅱ-13 | 휴먼마이크로바이옴 유전자 분석 기술의 발달(1990-2017)

- 주요국은 '00년 후반부터 막대한 자금과 인력을 투입하여 휴먼마이크로바이옴을 활용하기 위한 대규모 프로젝트를 진행
 - (유럽) '08년 전세계 공동 연구를 위한 국제인간마이크로바이옴(IHMC, International Human Microbiome Consortium) 이니셔티브를 운영하고, Horizon 2020 투자계획 일환으로 마이크로바이옴지원 컨소시엄을 운영하여 표준화, 정책, 펀딩, 진단, 교육 차원의 범국가적 지원체계 구축
 - ※ IHMC에 한국은 '11년 5월에 8번째 회원국으로 가입

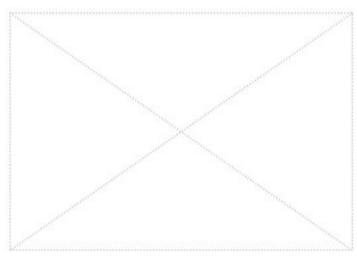
- -(유럽) MetaHIT(Metagenomics of the Human Intestinal Tract)을 기획, 유럽 중심의 인간 장내 메타게놈 프로젝트로 건강한 사람과 환자 사이의 장내 마이 크로바이옴을 비교·분석하고 인간 건강과의 연관성 규명을 위해 노력
- -(미국) '07년부터 10년간 미국국립보건원의 주관으로 시행한 인간 마이크로 바이옴 프로젝트(HMP, Human Microbiome Project)는 인체의 마이크로바이옴 구조와 인체 서식 미생물들의 유전체 서열을 밝혀 참조 유전체(Reference genome) 데이터 구축이 목표로 추진
- ※ 총 2단계(1단계 '07~'13년, 2단계 '14년~'16년)로 구성, 총 10억 달러 이상으로 마이크로 바이옴 관련 단일 프로젝트 기준 가장 큰 규모
- -(미국) '16년 국가 마이크로바이옴 이니셔티브(NMI, National Microbiome Initiative) 계획을 추진하여 미생물 역할 규명, 새로운 응용 기술 개발을 위한 공동연구지원, 플랫폼 기술 개발, 전문인력 확충 시도
- * '17년~'19년(2년간)동안 연방기관 1억2100만달러(약 1440억원) 및 재단·기업·대학 등 민간에서 4억 달러 이상의 투자 지원
- 마이크로바이옴 치료제 분야는 주로 질환을 대상으로 후보물질 발굴에서 시작하며,
 후보물질 발굴 후 이의 효능 및 안전성을 검증하고 제제화를 위한 연구를 추진
 - -특히, 휴먼마이크로바이옴은 소화기관에 가장 밀집해있어 그간 비만, 당뇨 등다양한 대사질환과 이들의 관계에 대한 연구가 많이 진행
- 마이크로바이옴은 현대의 난제 중 하나인 '항생제 내성'을 해결할 유망 연구분야로 주목받는 상황⁶⁾
 - 항생제 사용으로 인해 장내 마이크로바이옴의 정상 구성이 파괴돼 발생하는 CDI(Clostridiumdifficile infection)는 미국의 경우 매년 50만 건 이상이 발생하고 연 29,000여명의 사망자가발생하는 것으로 알려졌으며 이에 대한 시장 규모는 최대 3.5억 달러로 추정
 - -미국의 OpenBiome외에 여러 마이크로바이옴 전문기업들이(Seres Health, SymbioticHealth 등) 분변이식 방법이 아닌 건강한 사람에게서 분리된 균총 조성물을 개발하여 CDI치료를 위한 임상시험 중
 - 연구가 성공하면 아직까지 별 다른 치료제가 존재하지 않는 항생제 내성과 그로 인한 감염질환의 발생을 감소시킴으로써 인류의 건강 증진과 의료비용 감소에 기여할 것으로 기대

⁶⁾ 한국과학기술기획평가원, 기술동향브리프_휴먼 마이크로바이옴, 2018.03


- (표적 단백질 분해 기술, TPD*) PROTAC**라고도 부르며, 질병 관련 단백질 자체를 제거하는 선택적 단백질 분해 방법으로 약물의 내성을 극복할 수 있는 전략으로 각광
 - * Targeted protein degradation, ** Proteolysis-Targeting Chimera
 - 질병을 유발하는 단백질 자체를 세포내 단백질 분해 시스템을 활용하여 단백질을 특이적으로 분해시킬수 있는 신기술로 관련 업계에서는 PROTAC(Proteolysis—Targeting Chimera)로 부름
 - PROTAC 기술은 세포 내 존재하는 문제 단백질을 분해하는 UPS(Ubiquitin Proteasome system)을 활용,타겟 단백질을 분해하도록 유도
 - 기존 항암제 대비 약물 내성을 가진 표적 단백질에 더 반응하고, 저해제 기반의 기존 약물로 타깃하기 어려웠던 표적 단백질(UndruggaBLe Proteins)에 접근 용이
 - 국내에서 PROTAC 바이오 벤처로 유빅스테라퓨틱스는 PROTAC 기술을 이용해 신규 면역항암제 개발에 집중
 - Epigenetic 타깃인 BRD4 저해제를 이용한 혈액암, 고형암을 치료하는 면역 항암제 개발 중

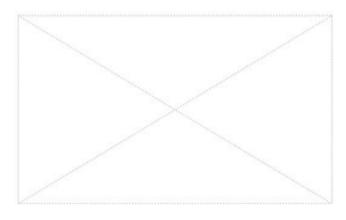
자료 : 유빅스테라퓨틱스 홈페이지

|그림 Ⅱ-14 | 유빅스테라퓨틱스의 PROTAC 플랫폼


Arvinas사의 ARV-110 (androgen receptor PROTAC), ARV-471 (estrogen receptor PROTAC)이 최초로 임상에 진입('19) → 전림선암, 유방암 임상 1상에서 항 종양 효과 관찰('21)

구분	프로탁	저분자화합물	항체의약품	siRNA	CRISPR
세포 내 표적	0	0	X	0	0
전신 수송	0	0	0	X	0
조직 투과성	0	0	Poor	Poor	0
스캐폴드 타겟팅	0	X	0	0	0
질병 단백질 제거	0	X	X	0	0
경구 생체이용률	0	0	X	X	X
효소 기능	0	X	X	0	0
출시된 신약	임상 진입	0	0	0	임상 진입

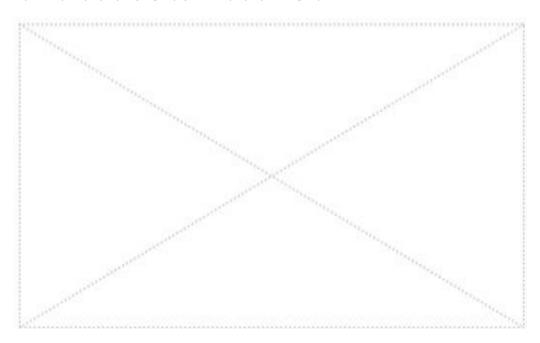
자료: Signal Transduction and Targeted Therapy, 2019


- (박테리오파지) 독성 파지의 살균 능력으로 천연 항생제로 사용되었으나, '90년대 이후 항생제 내성을 가진 세균이 문제가 되면서 다시 주목, 특성과 효용성을 이용 하여 치료제 연구에 활용
 - 박테리오파지는 박테리아(세균)를 숙주로 하는 바이러스를 통칭하는 말로 자가증식, 특정 세균에 대한 높은 선택성, 유전자 조작이 용이해 다제내성균 감염의 대체 치료로서 성공적인 치료 효과 증명
 - 박테리오 파지의 종류는 셀 수 없을 정도로 많기 때문에 특정 병원균의 천적 파지를 찾기 쉬우며, 박테리아를 제외한 생물을 공격하지 않아 효과적으로 병 원균 제거 가능
 - 다제내성균 감염(녹동균, 아시네토박터 등) 치료, 요로감염 및 패혈증 치료 등 항생제를 더 이상 사용할 수 없는 감염 치료에 활용
 - 박테리오파지 기술로 매우 강력한 체액성 면역(Humoral Immunity)를 유도하여 면역항암제인 항암백신이 유망한 면역치료제로 개발중
 - 암과 관련되는 항원의 하나인 MAGE 항원을 발현한 Pfd8wf 박테리오파지 백신을 흑색종 세포를 이식하여 암을 유발시킨 쥐에 투여하였을 때 암세포의 성장을 억제하였으며 결과적으로 전반적인 쥐의 생존일을 연장
 - 기타 다른 암과 관련된 항원 또는 펩타이드를 발현한 박테리오파지를 사용한 여러 in vitro 및 in vivo실험들에서도 치료적 효과 발견

자료: iNtRON Biotechnology, 박테리오파지 기술, 감염병에서 암치료까지, 2021

│그림 Ⅱ-15 │ Tumor associated antigen(TAA) 발현 박테리오파지로 인한 체액성 면역 반응 유도

- 감염병 분야에서도 코로나19를 유발하는 신종바이러스를 타깃으로 하는 살균 바이러스 개발 중
 - 코로나19와 관련, 발생하고 있는 세균 침투 상황에서 합성 박테리오파지를 이용하여 항체를 생성, 2차 세균 감염에 대비하여 면역체계의 혼란을 사전에 차단하는 기술 개발(英, '20)
- 알코올성 간염을 유발하는 주범인 장내세균(엔테로코커스 폐칼리스)에 박테리오 파지를 주입해 세균을 감염시켜 병을 치료하는 방법 개발(美, '20)
- 또한 특정유전자를 편집라여 특정 세균을 공격하는 박테리오파지 연구도 진행
 - -T4 파지에 크리스퍼유전자 가위기술을 적용, 점막면역을 유도하는 비강 백신 연구가 동물실험에서 효능 입증(美, '22)



|그림 Ⅱ-16 | 점막면역 유도 비강백신 연구 매커니즘

2.2. 감염병 분야별 연구개발 동향

가. 신·변종 감염병

- (COVID-19) 팬데믹 관련 백신 개발 및 임상시험이 주요국에서 지속 추진 되고 있는 상황
 - 美 NIH Clinical Trials에 등록된 COVID-19 관련 약물 중재 임상시험은 '20년 3월 11일 기준 총 56건 진행
 - -COVID-19 치료법에 대해 신종 백신이 아닌 기존 제제를 적용하기 위한 임상 실험이 지속 추진
 - ※ 항바이러스제제인 Favipiravir, Remdesivir, Lopinavir, Interferon—alpha 및 항암제인 Bevacizumab(Avastin), 말라리아 치료제인 클로로퀸 계열, 발기부전치료제인 Sidenafil(비아그라), 중배역 줄기세포 등 다양한 치료제 시험
 - 치료제 관련 임상 전체 53건 중 30건은 연구자 주도 임상시험이며, 그 중 21건은 제약사 주도 임상시험, 2건은 NIH 및 연방 후원
 - 임상시험 대부분은 감염환자가 많은 중국에서 수행 중이나, 최근 글로벌 제약사 주도의 다국가 임상시험도 시작하는 상태

자료 : 한국과학기술기획평가원(2020)

| 그림 Ⅱ-17 | COVID-19 관련 진행 중인 임상시험 로드맵('20년 4월말까지)

- 팬데믹 이후 신·변종 감염병에 대한 위기 대응 분위기가 고조되는 가운데 질환별로 진단·백신·치료 부문의 연구개발 강화 중
- (호흡기세포융합바이러스(RSV)) 시판 치료제가 1종 있으나 사용성이 제한 (제한된 적응증과 효능으로 신생아 및 노인사용 제한)되어 단클론 항체 치료제가 개발 중이며, 백신은 임상 진행 중
 - (진단) Filmarray를 이용한 호흡기바이러스 검사는 1회 검사로, 21개 호흡기감염 워인에 대한 바이러스 및 세균 검사 실시
 - (백신) 미국은 임상3상 포함 다양한 유전자형 타켓 임상연구 시도
 - ※ ('19, 얀센) F단백질 수정 백신 임상1상 결과, 기존 대비 7~15배 이상 항체 생성 확인
 - ※ ('20, 미국GSK) 백신후보물질 GSK3888550A의 임상 3상 시작
 - ※ ('21, 한국화이자) PF-06928316의 국내 임상 3상 실시
 - (치료) RSV 항바이러스제의 내성률을 낮추기 위해 뉴클레오사이드 유사체 형태 항바이러스 약을 이용하거나 siRNA 치료제 등 다양한 내성기전 연구를 통한 새로운 치료물질에 대한 연구 진행
- (급성호흡기감염) 코로나바이러스 유래 감염병에 대한 지속 발발에 대응하고자 동일 RBD 기반 후속 연구 및 발전연구 지속
 - (백신) SARS 바이러스와 메르스의 RBD는 여러 형태에 기초한 항원결정인자를 포함하고 있고 매우 강한 중화 항체를 유도하므로 RBD를 표적으로 한 아단위 백신 및 그 유사체 개발이 활발
 - (치료) MERS-CoV 도메인에 결합하는 항체연구 및 동물모델 개발 단계
 - ※ 홍콩대학교에서는 MERS-CoV의 수용체 결합 도메인에 결합하는 키메라 항체 및 인간화 항체를 개발하였고, 동물모델 확립을 진행 중
 - ※ 2015년도에 발발한 MERS-CoV에 대한 항체 및 펩타이드를 이용한 치료법 개발하여 보고

나. 기후변화 및 인수공통감염병

■ (중증열성혈소판감소증후군(SFTS)) 발생국이 제한적(한국, 중국, 일본)으로 현재 3개국 모두 백신 개발 기초 단계이며, 현재까지 상용화된 백신 및 치료제는 전무한 상태

- (백신) Live Viral Vector 백신 개발을 추진 중이며, 바이러스 역상유전자 시스템 개발 등 기초연구도 진행하고 있으나 바이러스 기전 및 유전자형 연구 등 대부분이 아직 기초 수준
 - ※ 일본은 NIID Live viral vector로 백신 개발 추진 중
 - ※ 영국/중국 공동연구로 SFTS 바이러스 역상유전자 시스템 개발하는 등 이를 이용한 백신 개발이 추진 가능한 상태
- (뎅기/지카바이러스) 진단제 및 백신 분야는 임상 단계에 진입한 연구결과가 많지만 치료제 연구는 미흡한 실정
 - (진단) 플라비 바이러스 진단을 위한 ICT 융합 기반 새로운 진단기술 개발 시도
 - ※ 미국은 유전체편집기 CRISPR를 각색한 진단도구 '셜록'을 통해 극미량의 지카 및 뎅기 바이러스 진단신호 탐지 성공
 - (백신) 기존 플라비 바이러스 백신 플랫폼을 응용한 형태를 중심으로 연구가 진행되는 가운데, 다양한 플랫폼 기반 백신 연구가 임상2상 이상 진입한 결과 다수
 - (치료) 지카 바이러스 단백질 유래 치료제 연구가 비임상단계이며, 소두증을 유발에 대한 기전연구 진행
 - ※ 미국은 지카 바이러스 단백질인 N55의 구조를 규명하고 다른 바이러스 약물에 효능을 실험 중
 - ※ 중국은 'Z2(지카바이러스 유래 합성단백질)'를 개발하여 임신한 마우스 모델에서 항바이러스 효능 확인
 - ※ 또한 미국은 특정 단백질을 감염시키는 지카바이러스의 소두증 유발 규명
- (일본 뇌염) 바이러스의 직접적 피해보다 급성뇌염으로 인한 합병증이 문제가 되어 치료보다 예방이 중요하게 여겨짂
 - (진단) 뇌척수액과 혈액에서 해당 균이나 바이러스에 대한 항체를 PCR 검사를 다중 감별·진단 연구 또는 급성중증 바이러스 감염증으로 이행을 조기에 판별할 수 있는 진단제 개발
 - (백신) 기존 사백신의 단점을 보완하고자 전통적인 쥐 뇌 조직, 그 외 항체 확보· 배양 연구 및 투여방식에 대한 연구 활발히 진행
 - ※ 중국, Bamboo Mosaic Virus-Based Vector 이용 항체 배양 연구 진행('17)
 - ※ 미국, Recombinant chimeric virus vaccine으로 새로운 재조합 형태의 바이러스 백신 마우스모델 확보('17)

- (치료) FDA 승인된 약물에서 일본뇌염에 항바이러스 효과가 있거나 항생 약물을 스크리닝하는 연구 진행
- (말라리아) 약물내성 말라리아로 인해 백신 및 치료제 개발 필요성 강조
 - 말라리아백신기구(Malaria Vaccine Initiative, MVI)가 설립되면서 말라리아 백신 후보의 평가 및 확인 속도를 크게 개선

│표 Ⅱ-17│말라리아에 대한 국외 백신 연구 동향

구분	내용
전적혈구기백신	 열대열말라리아의 원충을 막기 위한 RTS,S 백신 개발 후 효능평가 중 최근 사람 아데노바이러스를 이용한 초기 연구에서는 벡터 면역 후 바이러스의 증식을 방해하는 중화 항체가 생성되어 문제해결을 위해 옥스퍼드대학의 후원아래 8개 국가 8개 기관에서 각각 임상 1상 및 2상 연구가 진행 중
적혈구기 백신	 최근 현지 연구에서 열대열말라리아의 AMA1, MSP3, SERA5의 적혈구기 표적으로 이용한 백신 임상효능 입증 *추가 항원들은 현재 임상 1상 및 2상 개발단계 임신과 연관된 말라리아 백신 var2CSA는 전임상 단계 *Var2CSA는 태반 기생충에 의해서 발현되며 임신동안 획득되는 후천면역의 표적
유성, 포자생식, 모기단계 백신	 식물에서 키메릭(chimeric)바이러스 유사 입자(Virus-like protein, VLP)를 생산하는 데 기여하는 Pfs25 구성 요소가 새로운 가능성을 보이며 최근에 초기 임상평가 진행 Pfs48/45, Pfs230, HAP2 및 AnAPN1 등 추가 표적 항원에 관한 전임상연구도 활발

자료: 최근 말라리아 백신 개발현황, 질병관리본부(2016)

다. 인플루엔자

- (계절성 인플루엔자) 다양한 아형이 존재하여 매년 변이를 일으키는 인플루엔자 독감 예방을 위해 범용 백신 중심의 개발이 활발하며, 치료제는 내성 이슈로 지속적으로 신약 개발 추진
 - (치료제) 국내는 타미플루 복제약 다수 생산 중, 신약의 경우 임상 2상까지 마친 CT-P27(셀트리온)이 있으나 허가된 의약품 없음
 - ※ ('19, 美NIAID) 전체 인플루엔자 바이러스 아형에 면역반응을 가지는 광범위 예방백신 개발 중
 - ※ ('20, 美조지아주립대) 범용백신 FLU-v 임상 2상 결과 항체형성·면역반응 촉진 확인

- (동물 인플루엔자 인체감염증) 인체감염을 일으키는 동물 인플루엔자를 대상으로 한 백신 개발 위주 연구 진행
 - '17년 질병관리본부에서 치료제 후보물질 Mycophenolic moferil을 발굴, H5N1형 바이러스 증식 억제현상 및 항바이러스 기능 규명
 - ※ ('18, 베트남) 변종 조류 인플루엔자 A/H5N1 예방 백신을 개발하여 인플루엔자바이러스 번식과 백신 생산 및 테스트에 성공적 프로세스 구축
 - ※ ('20, 美세퀴러스) 변종 조류 인플루엔자 A/H5N1 백신 AUDENZ FDA 승인
- (신종인플루엔자) 주로 변종 조류 인플루엔자 백신 개발을 통해 백신 생산 및 테스트 프로세스 구축 연구, 고병원성 조류 인플루엔자 백신 개발을 통한 면역화 증가 연구 진행
 - ※ ('20, 중국) 신종 인플루엔자에 대한 1가 인플루엔자A 분할 백신을 개발하여 동물모델에서 효과를 검증한 결과 적혈구 응집 억제 및 미세중화를 유발, 보조제(정촉매) 첨가 시 항체 반응 증가, 임상 진입단계

라. 결핵

- 기존에 개발된 백신, 치료제로 인한 내성 문제를 해결하고, 잠복결핵을 진단함 으로써 광범위한 내성 결핵으로 증상 발전을 억제하기 위한 새로운 기전을 사용한 치료제 연구가 활발
 - 항결핵 치료제가 존재하나 내성 발생의 문제로 1차 치료제에 이어, 2차 치료제를 함께 복용하여 치료가 권장되는 상황
 - -(1차) isoniazid(1952년 개발), rifampicin(1966년), pyrazinamide(1952년), ethambutol(1961년), streptomycin(1943년) 등 개발 된 지 40년이 넘는 치료제가 존재하며 치료효능이 뛰어나지만, 장기간 사용에 따른 내성 문제가 발생하여 치료 기간을 단축할 수 있는 새로운 치료제 개발 필요
 - ※ Isonaizid는 prodrug으로써 결핵균의 katG라는 효소에 의해 활성화되어 결핵균의 세포벽 주 구성요소인 mycolic acid의 합성을 억제하는 것으로 알려져 있음
 - ※ rifmapicin은 Amycolatopsis rifamycinica라는 세균으로부터 얻어진 반합성 화합물로써 약효 기전은 결핵균의 DNA-dependent RNA polymerase의 역할을 방해하여 RNA 합성을 억제하여 결핵균을 사멸
 - ※ pyrazinamide는 isoniazid와 같은 prodrug으로써 결핵균의 pyrazinamidase에 의해 acid로 활성화 되어 결핵균의 성장을 저해하는 기전

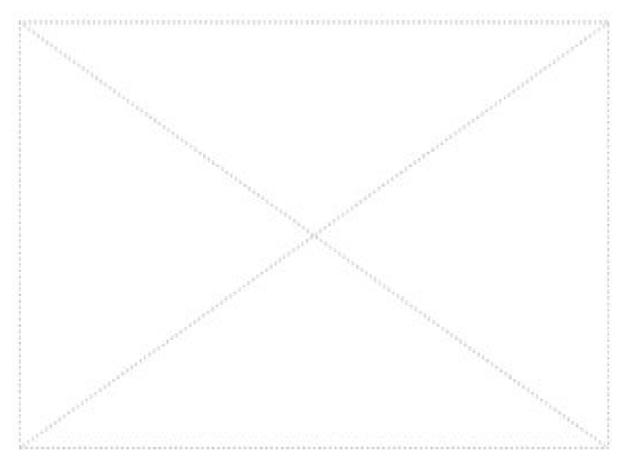
- ※ Ethambutol은 활동성 결핵균의 성장을 저해하는 bacteriostatic 치료제로써, 세포벽의 구성요소인 arabinogalactan의 합성을 억제하여 결핵균의 세포벽 형성을 막는 기전
- ※ streptomycin은 경구 치료제가 아닌 주사제로써, 세균의 단백질 합성 억제제로 작용하고 있으나, 현재 결핵 치료에는 사용이 제한되고 있음
- ※ Moxifloxacin(AZD5847)은 기존 항결핵 치료제 단점 보완 및 치료기간 단축형 치료제 임상개발 중
- ※ Bedaquiline(SQ109)은 일반결핵과 내성결핵에 동시에 효능을 보이는 결핵 치료제 임상개발 중
- -(2차) 2차 항결핵 치료제는 다제내성 및 광범위 내성 결핵환자를 치료하기 위한 목적으로 처방되는 치료제로 1차 항결핵 치료제와는 달리, 치료 효능은 약하며, 장기 복용에 따른 독성에 대한 이슈가 있으며, 치료 비용도 높은 실정
- ※ Thioamide류(ethioamide, prothioamide 등) 항생제는 prodrug으로써 EthA라는 효소에 의해 활성화되어 세포벽의 주 구성요소인 mycolic acid 합성을 저해하는 약효 기전
- ※ cycloserine 치료제도 세포벽의 구성요소 중 peptidoglycan의 합성을 저해하여 결핵균의 성장을 억제
- ※ 4-Aminosalicylic acid(PAS)는 가장 오래된 2차 항결핵 치료제로 1940년대에 개발되어 현재까지 사용되고 있으며, 1차 치료제인 rifampicin과 pyrazinamide가 개발되기 전까지는 1차 치료제로 사용
- (주요 기업) 전세계 결핵 치료제 시장에서 주요 기업은 Lupin(인도), Otsuka Novel Products(독일), Pfizer(미국), Sandoz(독일), Sanofi(프랑스) 등이 존재

|표 Ⅱ-18|글로벌 결핵 치료제 주요 기업

7]	업	내용					
Lupin (인도)		• 항결핵 의약품, 항생제, 심혈관 약품 제조 및 마케팅에 종사하는 제약회사로, 당뇨병, 염증, 호흡기 치료제 분야에서도 약제 생산 *미국 보건당국으로부터 결핵 치료를 위한 Sanofi-Aventis 리파딘 캡슐의 일반 판촉 허가를 획득					
Otsuka Novel Products (독일)		■ 제약 및 건강관리 회사로 주로 감염병 치료를 위한 진단 도구와 신제품 개발 및 개선 주력 *GDF(Global Drug Facility)를 통해 전 세계 100여개국에 대한 MDR-TB 치료제로서 델라미드 사용 전략 발표 *일본 규제당국의 일본 시장 허가 및 유럽 의료청 판매 허가 획득					
Pfizer (미국)		 건강관리 제품의 발견, 개발, 제조에 종사하는 연구기반 제약회사로, 혁신제품과 기성제품의 두 가지 부문으로 운영 * 결핵 치료용으로 개발된 슈테졸리드 제조를 위한 전 세계 독점권을 행사 					
Sandoz (독일)		 바이오시밀러와 일반 항생제를 제조하는 기업으로, 중추 신경계, 심혈관, 통증 및 안과, 호르몬 치료제 등의 제품을 생산 *미국 FDA로부터 결핵 치료제 승인 *결핵 조기감지 확대를 위해 남아공에서 결핵 스쿠터 프로그램을 진행 					

자료 : 연구개발특구진흥재단(2019), 결핵 진단 및 치료제 시장

마. 항생제 내성

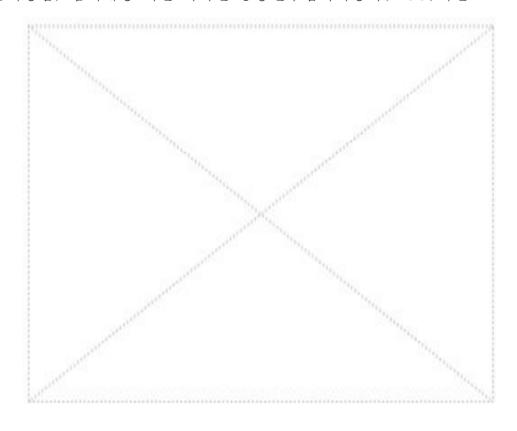

- WHO는 '20년 임상 및 전임상 단계에 있는 항균제를 발표했으며, 임상단계에 43개 파이프라인이, 비임상 단계에 292개 파이프라인 존재
 - (WHO) AMR 대응 신규 항생제 개발은 전 세계적으로 개발이 늦어지고 있으며, 개발 중인 파이프라인 50개 중 슈퍼박테리아를 치료할 수 있는 항생제는 부족
 - ※ (2020.1월, WHO) 주로 그람음성균(폐렴간균, 병원성 대장균) 치료용 항생제 신약이 대다수, 카바페넴 내성 유전자(NDM-1) 표적 항생제 및 치료제가 없는 클로스트리디움 디피실에 대한 항생제 개발이 필요하다고 지적
 - (임상) 43개의 파이프라인 중 27개는 비전통적 방식의 항생제로, 항체 9건, 박테리오파지 4건, 마이크로바이옴 8건, 면역작용제 2건, 기타 4건으로 나타남
 - ※ 임상 43개 파이프라인 중 26개는 WHO 우선 병원체를 타겟, 12개는 결핵을 제외하면, S. aureus과 C.difficile이 다수로 진행되는 것으로 보임
 - (비임상) 직접 작용제는 115건, 비전통적 항생제 101건, 백신 47건, 항균 펩타이드 보조제 29건으로 나타남

|표 Ⅱ-19 | WHO 선정, 임상단계 비전통적 항생제 개발 현황

약제명(synonym)	개발사	임상 단계	치료 루트	타겟병원체	특징
AR-301 (tosatoxumab)	Aridis	3	iv	S. aureus	Antibodies
CF-301 (exebacase)	ContraFect	3	iv	S. aureus	Bacteriophages
SER-109	Seres Therapeutics	3	Oral	C. difficile	Microbiome
AB103 (reltecimod)	Atox Bio	3	iv	S. aureus	Immuno modulating agents
SYN-004 (ribaxamase)	Synthetic Biologics	2b	Oral	C. difficile	Microbiome
OligoG (CF-5/20)	AlgiPharma AS	2b	Inhalatio n	P. aeruginosa	Miscellaneous
SAL-200 (tonabacase)	iNtRON Biotechnology, Roivant Sciences	2a	iv	S. aureus	Bacteriophages
AR-101 (panobacumab, Aerumab)	Aridis, Shenzen Arimab Biopharma	2a	iv	P. aeruginosa	Antibodies

		الد الد	ə) =			
약제명(synonym)	개발사	임상 단계	치료 루트	타겟병원체	특징	
BT588 (trimodulin)	Biotest	2	iv	S. aureus	Antibodies	
MEDI-4893 (suvratoxumab)	AstraZeneca	2	iv	S. aureus	Antibodies	
514G3	Xbiotech	2	iv	S. aureus	Antibodies	
IM-01	ImmuniMed	2	Oral	C. difficile	Antibodies	
AR-105 (aerucin)	Serum Institute of India/ Aridis	2	iv	P. aeruginosa	Antibodies	
LMN-101	Lumen Bioscience	2	Oral	E. coli, C. jejuni	Antibodies	
VE303	Vedanta Biosciences	2	Oral	C. difficile	Microbiome	
CP101	Finch Therapeutics	2	Oral	C. difficile	Microbiome	
DAV132	Da Volterra	2	Oral	C. difficile	Microbiome	
Ftortiazinon (fluorothyazinone) + cefepime	Gamaleya Research Institute of Epidemiology and Microbiology	2	Oral	P. aeruginosa	Miscellaneous	
PhageBank	Adaptive Phage Therapeutics and US Department of Defense	1/2	Oral	E. coli, K. pneumoniae	Bacteriophages	
Rhu-pGSN (rhu-plasma gelsolin)	BioAegis Therapeutics	1b/2a	iv	Non-specific Grampositive and Gramnegative strains	Immunomodulatin g agents	
DSTA4637S (RG7861)	Genentech/Roche	1b	iv	S. aureus	Antibodies	
LBP-EC01	Locus Bioscience	1b	iv	E. coli, K. pneumoniae	Bacteriophages	
CAL02	Combioxin SA	1	iv	P. aeruginosa, A. baumannii, Enterobacterales, S. aureus, S. pneumoniae	Miscellaneous	
GSK3882347	GSK	1	Oral	E. coli	Miscellaneous	
MET-2	NuBiyota/Takeda	1	Oral	C. difficile	Microbiome	
RBX7455	Ferring	1	Oral	C. difficile	Microbiome	
KB109	Kaleido Biosciences	N/A	Oral	Enterobacterales, C. difficile	Microbiome	

- 하지만, '14년에서 '19년 사이 승인된 항생제는 14개로 추정되며, 이 중 새로운 계열 항생제는 단 3개에 불과
 - 전 세계적으로 항생제 파이프라인은 89개 중 약제내성 황색포도알균 (Staphylococcus aureus) 감염 치료제 개발이 33건으로 가장 높음
 - 두 번째로 연구개발이 활발한 분야는 카바페넴 내성 장내세균과 같은 장내세균속 (Enterobacteriaceae) 내성 치료제로 분석되었으며 25건으로 두 번째로 많이 개발



자료 : 약제 내성균 치료 항생제 개발 현황, 한국바이오협회(2021)

┃그림 Ⅱ-18 ┃ 글로벌 약제 내성균 치료 항생제 개발 현황

3. 국내 감염병 연구기관 현황 및 체계

- 3.1. 감염병연구기관협의체 현황
 - 가. 감염병연구기관협의체 개요
- (목적) 감염병 위기상황을 조기에 극복하고, 연구기관 간 점진적으로 상생 발전 할 수 있도록 감염병연구기관 간 전주기 협력체계* 마련
 - * ①기관별 임무중심 평시-위기시 협력 및 연계방안, ②R&D 기술분류체계-포트폴리오-로드맵 구축, ③공동연구 신규사업 기획, ④백신·치료제 개발 국제연구협력 연계 강화
 - (참여대상) 감염병 R&D를 수행하는 국가 연구기관 전체
 - ※ 국가연구기관, 정부출연연구기관, 전문기관, 민간법인기관, 국제기구 등 10개 부·처·청 산하 20개 연구기관 참여 중(국제기구 포함, '23년 기준)
 - (참여방법) 참여대상 기관 다자간 공동연구협력의향서(MOU)체결

|그림 Ⅱ-19 | 감염병연구기관협의체

- (구성) 국립감염병연구소 등 감염병 R&D 수행 국가연구기관 총괄위원회, 실무자·사업단·인프라 기관 등이 참여하는 실무위원회로 구성
 - (실무협의체 구성·추진) 기관별 협력·연계를 통한 임무 중심의 평시-위기 시역할 분담 체계를 마련하고, 범부처 감염병 R&D 수요를 발굴·기획
 - -(운영) 정례회(분기 1회 등)와 수시회(필요 시)를 통한 안건 상정 및 협의 방식
 - -(핵심업무) ① 각 기관의 감염병 R&D 전주기 연구추진 현황 및 당해연도 성과 공유, ② 성과 이어달리기 / 주문형 연구추진 안건 제시, 검토 및 이행결과 공유, ③ 감염병 위기 대응 긴급 안건 등의 협의

나. 협의체 참여기관 주요 현황7)

【감염병 예산 규모) '23년 기준, 전체 감염병 사업예산은 5,233억원 (R&D 4,238억원) → ('23.2월 기준) 확인된 '24년 요구액은 5,215.7억원 규모

┃표 Ⅱ-20┃감염병연구기관협의체 참여기관의 감염병 관련 예산 규모

(단위 : 억원, %)

기관별		감염	념병 예산협	갈 계	I	R&D 예신	<u>-</u>	비R&D 예산		
		'23	'24 (요구)	증감	'23	'24 (요구)	증감	'23	'24 (요구)	증감
질병청	국립감염병연구소	1,148.4	1,452.6	26.5%	735.3	945.4	28.6%	413.1	507.2	22.8%
행안부	국립재난안전연구원	69.0	21.0	-69.6%	69.0	21.0	-69.6%	_	_	_
농림부	농림축산검역본부	754.4	793.4	5.2%	386.3	439.6	13.8%	368.0	353.8	-3.9%
환경부	국립야생동물질병관리원	148.0	156.3	5.7%	61.8	67.8	9.7%	86.1	88.5	2.7%
해수부	국립수산과학원	43.8	46.8	6.8%	43.8	46.8	6.8%	_	_	_
식약처	식품의약품안전평가원	163.3	169.3	3.7%	163.3	169.3	3.7%	_	_	_
	한국바이러스기초연구소	116.8	139.4	19.3%	116.8	139.4	19.3%	_	_	_
	한국화학연구원	143.6	140.9	-1.9%	117.6	114.9	-2.3%	26.0	26.0	0.0%
과기부	한국생명공학연구원	177.5	141.5	-20.3%	164.5	128.5	-21.9%	13.0	13.0	0.0%
	안전성평가연구소	90.9	91.4	0.6%	90.9	91.4	0.6%	_	_	_
	(재)한국파스퇴르연구소	134.6	86.4	-35.8%	134.6	86.4	-35.8%	_	_	_
교육부	인수공통전염병연구소	미정	미정	_	미정	미정	_	미정	15.0	_
국제기구	국제백신연구소	108.6	_	_	28.2	미정	_	80.4	미정	_
산업부	한국산업기술평가관리원	119.3	113.1	-5.2%	119.3	113.1	-5.2%	_	_	_
	한국보건산업진흥원	1,194.4	1,106.1	-7.4%	1,194.4	1,106.1	-7.4%	_	_	_
ਖ਼ਤੀ ਮ	신변종감염병대응mRNA백신사업단	165.0	미정	_	157.0	미정	_	8.0	미정	_
복지부	백신실용화기술개발사업단	146.5	218.0	48.8%	146.5	218.0	48.8%	_	_	_
	글로벌백신기술선도사업단	292.5	272.0	-7.0%	292.5	272.0	-7.0%	_	_	_
국제보건기술연구기금		_	_	_	_	_	_	_	_	_
방역연계범부감염병연구개발재단		216.3	252.3	16.6%	216.3	252.3	16.6%	_	_	
합계		5,232.9	5,215.7	-0.3%	4,238.2	4,212.2	-0.6%	994.7	1,003.5	0.9%

^{7) &#}x27;23년 2월 기준 자료로 향후 추가 확인 및 보완 예정인 수치로 대략적인 규모 파악 관점에서 해석 필요

■ (연구영역) '22년 조사 기준 협의체 참여기관의 감염병 연구영역은 기초 응용 및 치료·백신 분야에 집중된 것으로 조사되며, 임상역학, 감시예측, 방역방제 분야는 상대적으로 비중이 낮게 조사

┃표 Ⅱ-21┃감염병연구기관협의체 참여기관의 연구영역 및 주요 사업

			연구영역										
기관별		기 초 응 용	감 시 예 측	임 상 역 학	진 단	치 료	백 신	방 역 방 제	인 프 라		감염병 관련 사업 현황 (전체 사업 개수, 주요 사업명)		
질병청	국립감염병연구소	О	О	О	О	О	О	О	О	10개	감염병관리기술개발 공공백신개발지원 등		
행안부	국립재난안전연구원								О	1개	(내역) 신종 감염병 대응체계 고도화 등		
농림부	농림축산검역본부	О	0	0	0	О	О	0	0	1개	농림축산검역검사 기술개발		
환경부	국립야생동물질병관리원									1개	야생동물질병연구		
해수부	국립수산과학원	О	0		0	0	О		О	1개	수산시험연구		
식약처	식품의약품안전평가원	О					0			2개	의약품 등 안전관리 감염병 대응 혁신기술 지원		
과기부	한국바이러스기초연구소	О								1개	한국바이러스기초연 운영사업		
	한국화학연구원	О			0	0	О	0	О	2개	(내역) CEVI 연구단 (내역) 미래 신물질		
	한국생명공학연구원	О			О	О	О		О	6개	글로벌프론티어, 바이오의료기술개발		
	안전성평가연구소					0	О			1개	산업계 지원 기술역량 강화		
	(재)한국파스퇴르연구소	О			О	О	О		О	8개	바이오의료기술개발 라이트펀드 등		
교육부	인수공통전염병연구소	О				0	0			6개	(내역) 동물의약품 개발 등		
국제기구 -	국제백신연구소	О	0	О		0	О		О	4개	코로나19 백신/임상 그 외 백신 관련 연구		
	국제보건기술연구기금					0	0			_	_		
산업부	한국산업기술평가관리원	О			О	0	О			4개	(내역) 백신글로벌 산업화기반구축 등		
복지부	한국보건산업진흥원				О	О	О	О		11개	코로나19 임상/비임상, 감염병예방치료 등		
(재)방역연계범부처 감염병연구개발사업단								О		3개	방역연계범부처감염병연구 개발사업		
연구영역 응답 합계		11	4	3	8	12	13	5	8				

- (최근 주요성과) 최근 3년, 감염병연구기관에서는 신속진단키트(코로나19, 구제역, 어류 등), 치료제 후보물질(렉키로나주 등), 백신 후보물질 및 표준물질 (코로나19, 조류인플루엔자 등)을 개발하였으며, 임상 및 효능평가 지원과 기술이전을 통해 국내외 품목허가 승인 등의 성과를 창출
 - 기관 임무에 따라 표준시험법 확립, 전임상 동물실험 지원, 독성평가 모델 개발 및 평가 지원 등을 실시

┃표 Ⅱ-22┃감염병연구기관협의체 참여기관의 최근 3년('19년~'21년) 주요실적

		유관성과 구분						
기관별		기초 기전	치료 시험 방법	후보 물질	임상 지원	효능 평가	기술 이전	주요 실적
질병청	국립감염병 연구소	О	О	О	О	О		코로나19 치료제 상용화 지원 코로나19 백신 국가표준물질 제작
행안부	국립재난안전 연구원							('22년 신규 추진으로 실적 없음)
농림부	농림축산 검역본부	О	О				О	구제역 3종 고민감 신속진단키트 큐열 실시간유전자 진단법
환경부	국립야생동물 질병관리원			О				야생멧돼지 ASF 유전자 분석 인체에 무해한 SFTS 기피제 개발
해수부	국립수산과학원	О	О	О	О			어류 병원체 다중신속진단키트 넙치 연쇄구균병 예방 경구백신
식약처	식품의약품 안전평가원	О	О		О	О		코로나19 백신 임상시험법 확립 신기술 백신 품질평가 시험법
	한국바이러스 기초연구소	О						코로나19 바이러스 고해상도 유전자 지도 완성
	한국화학연구원	О		О	О		0	코로나19 분자진단/항원진단 키트 코로나19 치료제/백신 후보물질
과기부	한국생명공학 연구원	О	О	О	О		О	코로나19 영장류 감염모델 전임상 범용 인플루엔자 바이러스 백신
	안전성평가 연구소		О		О	О		코로나19 치료제, 백신, 방역물품 독성 평가 지원
	(재)한국파스퇴르 연구소			О	О	О		코로나19 치료제 후보물질 발굴 및 글로벌 임상 2-3상 개발(진행 중)
교육부	인수공통전염병 연구소				О	О		코로나19 동물모델 개발 SFTS 동물간 전파-면역반응 연구
국제기구	국제백신연구소		О	О	О	О		코로나19 백신 효능평가 시스템 마이크로니들형 HBV 백신
산업부	한국산업기술 평가관리원						О	패혈증 초고감도 신속진단 키트 코로나19 백신 대량생산 공정구축
복지부	한국보건산업 진흥원				О			코로나19 백신/치료제 임상-비임상 지원, 국내외 품목허가 승인 지원
(재)방역연계범부처 감염병연구개발사업단							Ο	코로나19 현장진단용 다중면역진단 기기 및 검체수송배지 상용화

다. 주요 참여 연구기관 세부 현황

> 국립감염병연구소

- 국립감염병연구소는 국가 감염병 연구개발의 컨트롤타워로서, 감염병 대비·대응을 위한 과학적 근거 마련 및 극복 기술 개발과 더불어, 연구환경 조성 및 기반 마련을 위한 임무 수행
 - (국가 감염병 연구개발 총괄 기획 및 관리) 감염병 관련 정책 및 투자 방향을 기획하고, 신규사업을 기획·발굴하며 연구개발 전주기에서 발생한 성과를 관리
 - (감염병 진단·백신·치료제 핵심기술(플랫폼) 개발 및 실용화) 감염병 진단·백신· 치료제 개발의 핵심기술을 확보하고 실용화하기 위해 병원체 자원 확보 및 후 보물질 발굴연구와 더불어 비임상시험을 위한 효능 평가기술 개발 및 임상시험 연구까지 전주기 연구개발 체계를 구축하여 관련 연구를 수행·지원
 - (임상·방역 연계 강화) 임상 및 방역현장 수요에 대응하여 민관협력을 통해 기술을 개발하고, 임상 연구와의 연계 활용을 강화하여 감염병 위기대응에 실질적인 도움이 되는 성과 창출
 - (국제공조 및 협력 강화) 국내·외 선진 연구기관, 국제기구 등과 협력체계를 강화 하여 공동 연구를 수행하고 연구자원 및 정보 교류를 통한 감염병 대응역량 강화
- (감염병 관련 R&D 사업 예산 규모) '23년도 기준 국립감염병연구소의 감염병 관련 R&D 예산 규모는 735억원 규모

|표 Ⅱ-23|국립감염병연구소 감염병 R&D 사업 및 예산 규모

사업명	'23년 기준 R&D 예산 규모 (단위: 백만원)
합계	73,528
감염병연구 국제협력 기반 구축	450
감염병 관리기술 개발연구	16,333
공공백신개발·지원사업	10,064
국가위기초래 바이러스 감염병 극복 기술개발	14,201
신기술 기반 백신 플랫폼 개발 지원사업	11,277
신변종 감염병 대응 mRNA백신 임상 지원	6,000
코로나19 후유증 조사 연구사업(추경)	7,258
국가 보건의료 연구인프라 구축	4,259
범부처 감염병 방역체계 고도화 R&D 사업	1,300
병원 기반 인간 마이크로바이옴 연구개발 사업	2,386

■ (기관 주요 인프라 보유 현황) (A)BL3, GCLP 시설을 포함한 공공백신 개발지원센터, 국가병원체원은행 보유·운영 중

|표 Ⅱ-24|국립감염병연구소 주요 인프라 보유 현황

구분	인프라명 (시설, 장비, 자원은행, 온라인 시스템 등)	보유 수	주요 활용내역
시설	공공백신개발지원센터 (ABL3, ABL2, BL3, BL2, GCLP)	1	
시설	국가병원체자원은행 (자원보존실 3개소, 품질확인 실험실 12개소 등)	1	코로나19 백신·치료제 개발지원 등
장비	연구장비: 백신후보물질(연구용) 대량배양, 면역효소분석기 등 500여종	500+a	
자원	병원체자원 (SARS-CoV-2 등 바이러스/세균/진균/파생물질)		'22.4월 기준 자원분양 1,769주

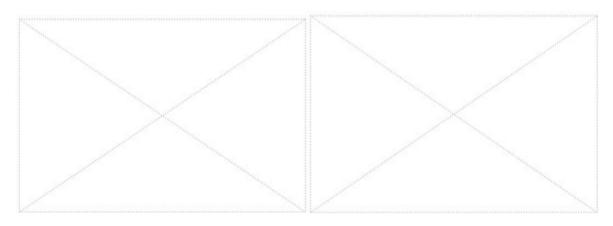
- ('22년, 기관 주요 성과) 국가 감염병 R&D 거버넌스 고도화, 감염병 위기 대응을 위한 국가 백신개발 및 인프라 확대, 감염병 치료제 개발을 위한 비임상 및 임상연구 체계 구축 등을 추진
 - 감염병 R&D 거번넌스 및 대내·외 협력체계 구축
 - ●감염병 R&D 중장기 계획('22~'26) 수립, ●국가과학기술자문회의 內 감염병특별위원회 신설('21.9.), ●출연금 근거 마련('22~), ●국내·외 협력체계 구축 (감염병연구기관협의체, 해외연구거점 구축) 등 추진
 - 감염병 위기 대응을 위한 국가 백신개발 지원 추진
 - -(국산 백신 개발) 자체 시험·분석을 통해 국산 제1호 백신 실용화 성과('22년 6월 허가, 9월 국내 접종 실시) 및 국산 백신 4종 임상 진입
 - -(인프라) 공공백신개발지원센터와 병원체자원은행 시설 완공에 따라 생물안전 3등급, 임상시험분석기관 운영 및 병원체자원* 제공 중
 - * ('20년) 3.047건'→('21년) 3.988건 → ('22.9월) 4.025건(414기관) 분양
 - 바이러스 감염병 치료제 개발을 위한 비임상 및 임상연구 체계 마련
 - -(치료제 개발·지원) 치료후보물질 대용량 신속 탐색기술 개발, 항바이러스제 효능평가 거점실험실 구축* 등 치료제 신속 평가 개발 및 지원 체계 마련
 - * 민간개발 치료효능 비임상 평가 지원('21~)

- -(임상연구) 「만성 코로나19증후군」 체계적인 조사를 위한 연구추진 및 의료 현장 치료가이드 마련 등 정보 제공
- (기관 주요 계획) 국가 감염병 R&D 거버넌스 및 협력 기반 지속 고도화, 백신 R&D 및 미해결 감염병 대응 역량 제고를 위한 노력 지속
 - 감염병 R&D 거버넌스 및 협력기반 강화 지속
 - -제3차 감염병 R&D 추진전략('22~'26)」시행계획 수립, 전주기-중장기 포트 폴리오/로드맵 기반 신규사업 기획 추진
 - ※ 감염병 위기 시 능동적 대응을 위해 산·학·연·관의 임무중심 전주기 협력 프로토콜을 바탕으로 임상, 허가까지 신속한 개발 추진
 - -국립감염병연구소를 중심으로 국내외 연구기관 간 협력체계 실행력을 강화 하고, 국가 차워의 국제공조 및 허브 역할 확립
 - 백신 R&D 핵심기관으로 개발부터 생산·활용까지 국내외 및 민관과의 전략적 연계·협력 추진을 통한 백신 자주권 확보 노력 이행
 - -mRNA 백신개발 핵심요소기술 확보 및 국가 주도 전략백신 개발 추진
 - * mRNA 기반 차세대 결핵 백신 및 SFTS 백신 후보물질 개발(~'24)
 - ※ 니파, 뎅기열 등 WHO, CEPI 지정 우선순위 병원체 중심 백신 후보물질 개발('22~)
 - -기존 변이주에 대한 교차중화능 평가는 물론 다양한 집단(노인, 청소년, 면역 저하자 등)의 면역원성 분석 등 지원 강화('23년)
 - 코로나19 변이, SFTS, 에이즈/ 만성간염 치료 등 미해결 감염병 대응 치료 후보물질(항체치료제 등) 발굴 및 평가 기술 고도화
 - 인간 마이크로바이옴 신기술 기반 난치성 감염질환 치료제 개발사업 추진 ('23년, 신규 13억)
 - 효능평가 표준화 및 치료후보물질 발굴 네트워크*를 상시 운영하고, 협력 강화를 통해 민간 치료제 개발 지속 지원**
 - * 미 NIH SFTS 항체치료제 개발 공동연구('22~)
 - **민간지원 약물평가 거점실험실 구축 및 운영(3개소. '21~)

한국바이러스기초연구소

- 신·변종 바이러스, 포스트 코로나 시대 대응을 위한 바이러스 기초 연구역량 강화를 목적으로 '한국바이러스기초연구소'설립('21.7)
 - 한국바이러스기초연구소는 코로나19를 계기로 중장기적 관점에서 감염병 대응역량 강화를 위한 바이러시 기초연구 전문기관 설립이 필요하다는 공감대 아래 설립
- (조직 및 연구분야) 한국바이러스기초연구소는 크게 연구 주제를 기준 으로 '신변종 바이러스 연구센터'와 '바이러스 면역 연구센터'로 구분
 - (신변종 바이러스 연구센터) 신·변종 바이러스질환의 병인기전 규명을 통한 바이러스성 질병 극복 연구 추진
 - 사회 재난형 신·변종 바이러스질환의 병인기전 규명
 - 잠재적 바이러스성 질환-X (Disease-X) 및 소외 열대성 바이러스 질환 (neglected tropical viral diseases) 연구 및 잠재적 병인기전 규명
 - 벡터 매개성 인수공통 바이러스 감염질환의 병인기전 규명
 - 고위험 바이러스성 감염질환 신규 진단기법 및 범적용성 질병제어 기술개발
 - (바이러스 면역 연구센터) 바이러스에 대한 면역반응 및 바이러스 질환의 면역 병리 기전연구를 통한 미래의 신종 바이러스에 대응할 지식기반 구축
 - 바이러스 감염에서 나타나는 면역반응 특성 규명
 - 바이러스 감염에서 이종병원체 면역반응 역할 규명
 - -면역노화가 면역반응에 미치는 영향 및 작용기전 규명
 - 바이러스 감염에서 각종 싸이토카인들의 영향 및 작용기전 규명
- (기관 주요 인프라 보유 현황) ABL3, BL3/4 시설 및 바이러스연구자원 센터 구축 중

|표 Ⅱ-25|한국바이러스기초연구소 주요 인프라 보유 현황


구분	인프라명 (시설, 장비, 자원은행, 온라인 시스템 등)	보유 수	주요 활용내역
연구시설	(연구시설) ABL3, BL3/4 시설 바이러스연구자원센터 (구축 중/'23.8월 승인 예정)	1	'22.12월 준공, '23.8월 승인을 목표로 승인 신청 준비 중

● (감염병 관련 R&D 사업 예산 규모) '23년도 기준 한국바이러스기초연구소 운영 사업 예산으로 117억원 규모 운영

|표 Ⅱ-26|한국바이러스기초연구소 감염병 R&D 관련 사업 및 예산 규모

사업명	'23년 기준 R&D 예산 규모 (단위: 백만원)
한국바이러스기초연구소 운영사업	11,684

- ('22년, 기관 주요 성과) 설립 이후 2개 연구센터 안정적 운영 기반 확보 및 바이러스연구협력협의체 구축 및 운영 추진
 - (연구센터) 신변종바이러스연구센터, 바이러스면역연구센터가 본격적인 연구를 시작하였으며, SCI 논문 18편 발표
 - (바이러스연구협력협의체*) 협의체 간사기관으로서, 총회 2회, 전문위원회 4회,
 바이러스 연구포럼 4회 개최
 - * 참여기관 : 바이러스(연)(간사기관), 생명(연), 화학(연), 안전성평가(연), <u>파스퇴르(연)</u>, 국가 마우스표현형분석사업단, 대경첨단의료산업진흥재단, 오송첨단의료산업진흥재단
- (기관 중장기 계획) 바이러스 및 감염병 기초연구를 대표하는 연구기관으로서의 위상 확립을 목표로 바이러스 기초연구 및 유관 기관 협력 강화 계획
 - 중장기적 관점의 바이러스 분야 기초연구 수행, 근본적인 감염병 대응 역량 강화 추진
 - 산업계, 학계, 연구계 등 바이러스 기초연구 수행 기관 간 연구 협력의 구심점
 역할 수행, 국내 감염병 연구 질적 수준의 전반적인 향상을 도모
 - 연구 성과가 기초연구 단계에서 머물지 않고, 방역·응용 기술로 연계될 수 있도록 질병관리청 등 관계 기관과의 협력 등을 추진할 계획

|그림 Ⅱ-20 | 한국바이러스기초연구소 중장기 발전 비전체계도

- 생명과학기술 분야의 연구개발 및 공공인프라 구축·운영을 추진하는 한국생명 공학연구원은 감염병연구센터를 주축으로 감염병 관련 R&D 추진 중
 - (감염병 연구센터 핵심 목표) 한국생명공학연구원 감염병 연구센터는 국가 감염병 대응기술 확보, 슈퍼박테리아 극복 신기술 개발, 바이러스 진단·예방 기술 확보, 국내 감염병 극복기술 네트워크 허브 구축 등을 목표로 운영 중
 - (주요 연구분야) 개량 항생제 생산을 위한 미생물 리엔지니어링, 천연항균제 발굴, 박테리아-숙주 상호작용 등에 관한 연구 추진

|표 Ⅱ-27|한국생명공학연구원 감염병연구센터 주요 연구분야

센터 핵심 목표	주요 연구분야
 ✓ 국가 감염병 대응기술 확보 ✓ 슈퍼박테리아 극복 신기술 개발 ✓ 바이러스 진단·예방 기술 확보 ✓ 국내 감염병 극복기술 네트워크 허브 구축 등 	 ✓ 개량된 항생제 생산을 위한 미생물 게놈 분석 및 리엔지니어링 ✓ small RNA 및 관련 복합체에 의한 다제 내성조절 메커니즘 발굴 ✓ 천연항균제 발굴 및 게놈 라이브러리를 이용한 타겟 발굴 ✓ 효소 및 백신의 박테리아 디스플레이 ✓ 박테리아의 acetylproteomes ✓ 박테리아-숙주 상호작용

■ (감염병 관련 R&D 사업 예산 규모) '23년도 기준 한국생명공학연구원의 감염병 관련 R&D 예산 규모는 164억원 규모

|표 Ⅱ-28|한국생명공학연구원 감염병 R&D 사업 및 예산 규모

사업명	'23년 기준 R&D 예산 규모 (단위: 백만원)
합계	16,446
(과기정통부)감염병 차세대 백신 기초원천 핵심기술개발	545
(과기정통부)바이오의료기술개발	9,800
(과기정통부)신·변종감염병대응플랫폼핵심기술개발사업	2,325
(과기정통부)국가생명연구자원선진화사업	200
한국생명공학연구원연구운영비지원	3,576

■ (기관 주요 인프라 보유 현황) 소동물, 영장류 ABL3 및 BL3 시설 다수 보유

|표 Ⅱ-29|한국생명공학연구원 주요 인프라 보유 현황

구분	인프라명 (시설, 장비, 자원은행, 온라인 시스템 등)	보유 수	주요 활용내역
연구시설	(연구시설) BL3, ABL2/3 시설 국가전임상시험지원센터 - BL3 실험실(화학(연) 3개, 파스퇴르(연) 3개) - BL3 시설 증축 1개(구축 중/23.12월 완공 예정) - 소동물 ABL3 실험실(생명(연) 1개, KMPC 4개) - 영장류 ABL3 실험실(생명(연) 1개) - 영장류 ABL3 시설 증축 1개(구축 중/23.12월 착공 예정) - ABL2 실험실(안전성(연) 10개)	26개	기초유효성 2,706건소동물유효성 82건영장류유효성 13건독성평가 51건
국제협력	(국제협력) GloPID-R 기반 국제협력 네트워크 구축 (포털사이트, 아-태지역 감염병 실드(APIS) 네트워크 등)	_	국제 공동연구 과제 8개 선정 및 지원

- ('22년, 기관 주요 성과) 신·변종 감염병 진단 기술 개발, 바이러스 병원성 기전 규명, 감염병 대응 전임상시험 지원 및 운영 체계 고도화 등 추진
 - 바이러스 수용체(ACE2)를 이용한 코로나19 등 신·변종 감염병 진단기술 개발
 - mRNA 생산 플랫폼 구축 및 비강경로 치료용 구조체 원천기술 개발
 - 인플루엔자 바이러스 단백질의 위치에 따른 새로운 병원성 기전 규명
 - 인간 병원성 코로나 바이러스의 진단을 위한 다중 RT-cPCR 분석법 개발
 - 감염병 대응 전임상시험 세부 지원 및 운영체계 고도화
- (기관 주요 계획) 감염병 진단/치료용 플랫폼 소재 개발 및 백신 개발 플랫폼 기술 개발 등을 중점 추진 예정
 - 나노바디 기반 감염병 진단/치료용 플랫폼 나노소재 개발
 - 차세대 mRNA 백신 개발을 위한 전달체 및 신규 mRNA 구조체 개발
 - 코로나 바이러스 단백질/펩타이드 백신 및 식물세포 기반 그린백신 플랫폼 개발
 - 인수감염 바이러스 유전 정보 활용, 진단기술 및 차세대 범용 백신 후보물질 개발
 - 산학연 전임상시험 지원 및 데이터/생태계 고도화

> 한국화학연구원

- 한국화학연구원의 대표적인 감염병 R&D 조직은 감염병제어기술연구단과 신종바이러스융합연구단으로 구성
 - (감염병제어기술연구단) 신·변종 바이러스와 다제내성 슈퍼박테리아 치료 및 제어 기술 확보를 목표로 만성 B형, 그람음성균 등 치료제 개발을 위한 연구개발 추진 중

┃표 Ⅱ-30┃한국화학연구원 감염병제어기술연구단 연구목표 및 분야

연구목표	주요 연구분야		
 ✓ 고위험 바이러스 혁신 치료·제어 기술 개발 ✓ 고위험 박테리아 혁신 치료·제어 기술 개발 	 ✓ 만성 B형 간염 바이러스 치료제 개발 ✓ 피코나 바이러스 치료제 개발 ✓ 그람음성균 치료제 후보물질 개발 ✓ 그람음성균 대상 HTS 시스템 구축 및 유효물질 발굴 ✓ 코로나19 질환을 효과적으로 치료할 수 있는 신규 항바이러스제 임상 후보물질을 개발 		

• (신종바이러스융합연구단) 신·변종 바이러스 감염 대응 융합 솔루션 개발을 목적으로 고감도 진단기술 개발, 바이러스 병원성 규명 기초연구 및 백신 연구개발 추진 중

|표 Ⅱ-31|한국화학연구원 신종바이러스융합연구단 주요 연구분야

분야 구분	주요 연구 내용
신·변종 바이러스 고감도 진단기술 개발	 ✓ 고감도 신규 POCT 플랫폼 기술 개발 ✓ 나노구조체 기반 고감도 진단용 기판 성능 고도화 연구 ✓ 미세유체칩 기반 면역세포 반응 모니터링 기술 개발 ✓ 고감도 표면증강라만 기판 및 진단용 센서 기술 개발
신·변종 바이러스 병원성 규명 기초연구 및 백신 연구 개발	 ✓ 신·변종 바이러스 감염 및 증식 특성, 면역 특성, 병원성 규명 기초연구 수행 ✓ 신·변종 바이러스 백신 개발을 위한 고효능 플랫폼 기술의 고도화 ✓ 신·변종 바이러스 주요 백신 항원 발굴 및 라이브러리 구축: 메르스-코로나바이러스, 지카 바이러스, 사스-코로나바이러스-2, 중증 열성 혈소판감소증후군 바이러스, 니파 바이러스 등 ✓ 신·변종 바이러스 감염동물모델 구축 및 백신 효능 평가시스템 구축

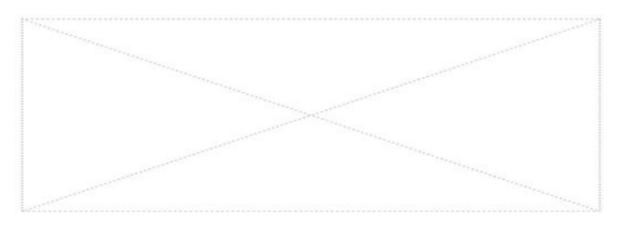
■ (감염병 관련 R&D 사업 예산 규모) '23년도 기준 한국화학연구원의 감염병 관련 R&D 예산 규모는 118억원 규모

|표 Ⅱ-32|한국화학연구원 감염병 R&D 사업 및 예산 규모

사업명	'23년 기준 R&D 예산 규모 (단위: 백만원)
합계	11,763
한국화학연구원 연구운영비지원(R&D)	6,175
한국화학연구원 자체사업	290
 [과기부]감염병차세대백신기초원천핵심기술개발(R&D)	200
 [과기부]개인기초연구(R&D)	141
 [과기부]국제협력네트워크전략강화사업(R&D)	300
[과기부]바이오·의료기술개발(R&D)	1,550
 [과기부]신·변종 감염병 대응 플랫폼 핵심기술개발(R&D)	2,400
 [복지부]K-Medi융합인재양성지원사업	255
 [복지부]감염병 예방·치료 기술개발사업(R&D)	180
[질병청]국가위기초래바이러스감염병극복기술개발사업(R&D)	273

● (기관 주요 인프라 보유 현황) ABL2, BL2/3 및 한국화합물은행, 고위험 감염병 자원은행 보유

|표 Ⅱ-33|한국화학연구원 주요 인프라 보유 현황

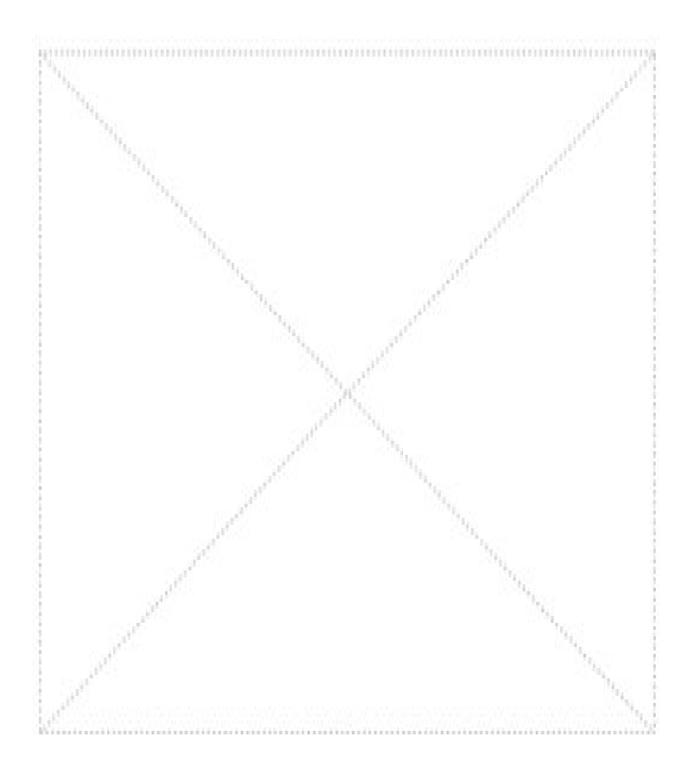

구분	인프라명 (시설, 장비, 자원은행, 온라인 시스템 등)	보유 수	주요 활용내역
연구시설	ABSL2, BSL2/3	각 1개 시설	- 진단, 백신, 치료제 항바이러스 효능 분석·평가
자원	한국화합물은행	73만종	 코로나바이러스 라이브러리 35,833종 분양 및 유효물질 최적화 연구 지원 4건 HIV: 189,665종 분양 기타 바이러스: 633 종 항생제: 20,049종 분양
자원	고위험 감염병 자원은행	감염병 인체자원 및 병원체자원 3,699건	분양 12건연구지원 2건시제품 테스트지원 2건

- ('22년, 기관 주요 성과) 코로나19 항원·항체 고감도 진단기술 및 백신개발 플랫폼 기술 관련 신규 IP 창출, 신·변종 감염병 및 다제내성 박테리아 치료제 개발 인프라 구축 등 추진
 - (진단기술) 나노구조체를 이용한 항체 고감도 코로나19 항체 검출 기술, 뉴클레오 캡시드 항원 검출용 신속진단 기술, ACE-2-항체 페어를 이용 항원 진단기술에 대한 신규 IP 창출 및 논문 발표
 - (백신) 신·변종 감염병 대응 '고효능 백신 제작 신규 플랫폼 기술' 구축 및 관련 기술에 관한 국내·외 신규 IP 창출 및 백신 제작 노하우 확보
 - (치료제) 신·변종 바이러스 대비를 위한 약효평가 시스템 구축 및 항바이러스 라이브러리 구축, 그람음성균 치료제 개발 인프라 구축을 통한 항생제 유효물질 발굴·최적화 및 high-throughput screening (HTS) 시스템 구축
- (기관 주요 계획) 미래 신·변종 감염병 대응 고감도 진단 및 신규 검출 기술 개발, 고효능 백신 제작 플랫폼 기술 및 치료제 약효평가 시스템 기반 후보물질 개발 수행 예정
 - (고감도 진단 및 신규 진단 플랫폼기술 개발) 복합 나노구조체를 이용한 금속강화 형광/표면증강라만 고감도 진단기술 개발 및 생체모사 장기 칩(Organ-on-a-chip) 활용 감염병 환자의 면역반응 고감도 검출기술 개발
 - (two-track 전략 기반 백신기술 개발) ①미래 예측 가능한(predictable) 신·변종 바이러스 : 항원 라이브러리 구축 및 '고효능 백신 제작 플랫폼' 활용 SFTS 및 RSV 백신 개발 ②미래 예측 불가능한(unpredictable) 신·변종 바이러스 : 감염병신속 대응용 신규 핵산 플랫폼 기반 백신 제작 기술개발 추진(mRNA 백신 개발 플랫폼 구축 전달체 요소기술 개발)
 - (신·변종 바이러스 및 다제내성 박테리아 치료기술 개발) 약효평가 시스템 기반 코로나바이러스 증식억제 히트화합물 도출 및 항바이러스 치료제 라이브러리 지속 구축, 그람음성균 치료 선도물질 도출, HTS 수행, 기전연구 등

3.2. 바이러스연구협력협의체

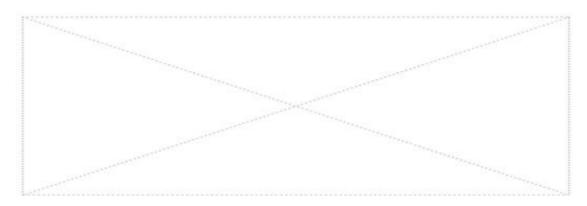
- (목적) 바이러스 기초연구 생태계 조성 및 역량 결집을 위한 구심체 역할 확보
 - 바이러스 유관 분야 연구기관, 대학 및 방역 기관 등과 긴밀한 협력 관계를 유지하고, 기초-응용 연구, R&D-방역체계 간 연계 강화
- (주요 기능) 바이러스 유관 주요 연구기관 간 역할 분담, 융합 연구 기획 등의 연구 협력 플랫폼으로의 기능 및 바이러스 감염사태 대응을 위한 거점 역할
 - (바이러스 연구협력의 허브) 기관 간 역할 분담, 융합연구 기획 등 연구협력의 허브역할 수행 → 연구협력사업 발굴 및 과기부 바이러스 연구사업 기획 제언
 - (바이러스 위기 대응 협조) 바이러스 감염사태 발생 시 협의체를 중심으로 바이러스 관련 정보 등을 공유 및 검역 당국에 협조
- (협력 내용) 대학, 출연(연), 기업 등과 네트워크 구축을 통한 기초·응용연구, 실용화 연계, 협력연구사업 등을 추진
 - (유관기관 연구협력) 대학, 출연(연) 등과 공고한 네트워크를 구축·활용하여 기초·응용연구 간의 시너지 효과 제고
 - 연구기관(바이러스(연), 생명(연), 화학(연) 등)과 유관대학(KAIST, 충남대 등), 평가·인프라지원기관(파스퇴르(연), 안전성(연), KMPC 등) 간 협업 수행
 - '바이러스 연구협력협의체'를 중심으로, 감염병연구소 등과 상시 협력체계를 구축하여 국가 바이러스연구 및 대응 역량 강화
 - (실용화 연계) 기초·응용연구 성과가 임상·실용화로 연계되기 위하여 첨단의료 산업진흥재단과 협력을 통한 지역 바이오기업 연계 강화
 - (협력연구사업 등) 바이러스 유관기관 간의 상호 협력을 통한 바이러스연구 및 대응역량 제고를 위하여 협력연구사업 등 추진
 - (국제 연구협력) 해외의 바이러스 분야 리더십 보유 연구기관 및 연구협력체와 MOU 체결 및 국제 바이러스 연구 네트워크 구축

- (협의체 구성) 바이러스 분야 관련 출연(연), 대학, 기업, 병원, 주요 확회 등으로 다자간 MOU를 통한 협의체 구성
 - (참여방법) 총회에서 신규 참여기관 의결 및 다자간 MOU 체결
 - (주요 참여기관) 한국바이러스기초연구소, 한국생명공학연구원, 한국화학연구원, 한국파스퇴르연구소, 안전성평가연구소, 국가마우스표현형분석사업단, 오송첨단의료 산업진흥재단, 대구경북첨단의료산업진흥재단 등 국내외 출연(연) 및 대학
 - (자문기관) 기업, 병원, 관련 학회
 - (간사기관) 한국바이러스기초연구소



|그림 Ⅱ-21 | 바이러스연구협력협의체 구성

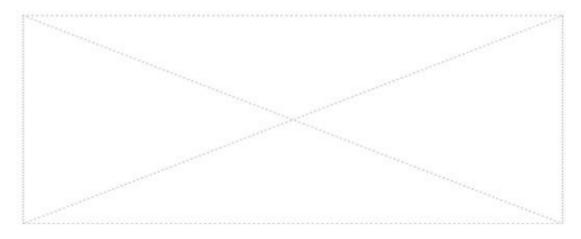
- 3.3. 국가 감염병 위기 대응 및 연구개발 협력 체계 내 IPK 역할 종합가. 국가 감염병 연구협력과 IPK 포지셔닝
- 우선 크게 국가 감염병 연구협력은 감염병연구기관협의체를 기반으로 각 소관 부처 특성에 따라 기초·응용에서 임상·상용화까지 큰 범위의 역할 포지셔닝 구축
 - (IPK 포지션) IPK는 감염병연구기관협의체 기반의 연구생태계 내 과기부 중심 연구기관 중 하나로 큰 범위에서 <u>기초·응용 단계의 연구</u> 포지션 할당



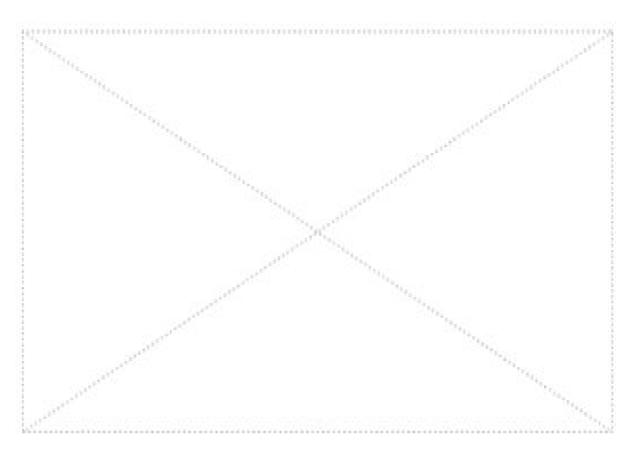
|그림 Ⅱ-22 | 감염병연구기관협의체 기반의 감염병 연구협력 체계(안)

┃그림 Ⅱ-23 ┃ 감염병연구기관협의체 기반 연구개발 단계별 연구기관 주요 포지셔닝

- 또한 바이러스 분야의 연구역량 결집 및 국가 위기 대응력 제고를 목적으로 한국바이러스기초연구소 중심의 바이러스연구협력협의체가 운영 중
 - (IPK 포지션) IPK는 바이러스연구협력협의체 내 <u>'약물 스크리닝'</u>, <u>'중개연구'</u>에 특화된 기관 역할 포지션 담당 중



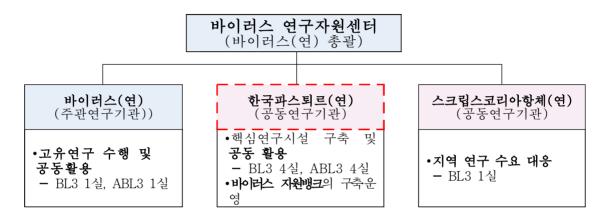
|그림 Ⅱ-24 | 바이러스연구협력협의체와 IPK 포지션


나. 감염병 연구 지원체계 내 IPK 포지션

국가전임상시험지원센터

- 산·학·연의 코로나19 치료제·백신 연구개발 관련 애로사항에 대한 원스탑 신속 해결 지원을 위해 과기부(사무국: 한국생명공학연구원)를 중심으로 감염병 주요 연구기관 및 대학 간 협력을 통한 국가전임상시험지원 체계구축·운영 중
 - (IPK 포지션) IPK는 국가전임상시험지원체계 내 초기 단계에서 화학(연)과 함께 기초유효성 평가 지원 역할을 담당

|그림 Ⅱ-25 | 국가전임상시험지원 원스톱 지원체계 플랫폼

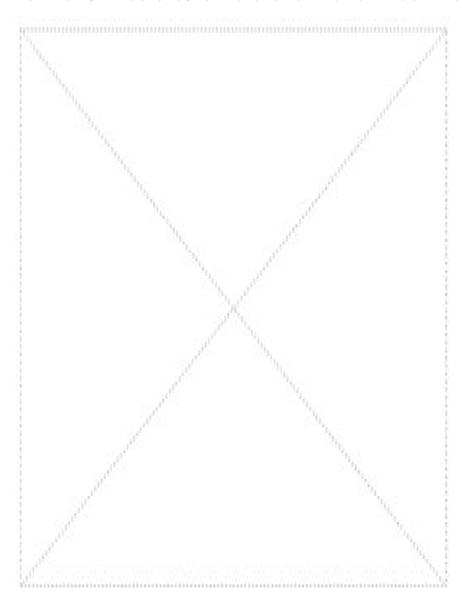


|그림 Ⅱ-26 | 국가전임상시험지원센터 조직 구조

> 바이러스 연구자원센터 (구축 중)

- 기초·원천 연구를 위한 필수 연구자원 및 인프라를 산·학·연 연구자에게 제공하기 위해 바이러스(연)(총괄), 한국파스퇴르(연), 스크립스코리아항체(연)을 중심으로 바이러스연구자원센터 구축 중
 - (구축방향) 민간수요를 반영하여 BL3/ABL3 시설 및 바이러스 자원뱅크를 바이러스(연), 한국파스퇴르(연), 스크립스코리아항체(연)에 분리 구축
 - 연구시설 공동활용을 위한 생물안전 3등급 연구시설을 구축하고, 연구자원 확보 및 제공을 위한 바이러스 자원뱅크 구축
 - 협약기업 및 대학을 중심으로 연구시설 공동활용을 운영하고, '연구 인프라 협의체'구성을 통해 민간 BL3/ABL3 수요를 연구자원센터에서 1차적으로 대응, 심화 건은 출연(연) 등으로 연계
 - (운영방향) BL3 등 핵심연구시설을 오픈랩으로 개방하여 민간 기업·연구자의 직접연구를 지원하고, 바이러스·검체 등의 연구자원 확보·공유 추진

- (운영기관) 바이러스(연) 총괄 운영 기관, 한국파스퇴르(연)·스크립스코리아항체(연) 공동 운영기관으로 참여
 - -(IPK 포지션) 바이러스연구자원센터 공동 운영 기관 중 하나로 BL3/ABL3 핵심 연구시설 구축과 오픈을 통한 공동활용 지원, 바이러스자원뱅크 구축· 운영 역할을 담당



|그림 Ⅱ-27 | 바이러스 연구자원센터 구축 쳬계도

다. 감염병 위기대응 R&D 매뉴얼(과학기술정보통신부)


- 과학기술정보통신부는 감염병으로 인한 국가적 위시 상황에 체계적으로 대응하기 위해 과기부 및 관련 기관(출연(연) 등)의 R&D 대응절차와 조치사항을 규정한 매뉴얼을 구축
 - (매뉴얼 대상 기관 범위) 과학기술정보통신부를 중심으로 (1)출연연구기관,
 (2)과학기술원, (3)대학, (4)병원, (5)전문/지원기관, (6)기업 등 국내 감염병
 R&D 역량을 가진 모든 기관으로 대상으로하여 전방위적 협력·대응 체계 적용
 - -(1) 출연연구기관: 한국과학기술정보연구원, 국가수리과학연구소, H-guard 연구단, 한국기계연구원, 한국전자통신연구원, 한국과학기술연구원, 한국생명 공학연구원, <u>한국파스퇴르연구소</u>, 한국화학연구원, 한국한의학연구원, 안전성 평가연구소 등
 - -(2) 과학기술원 : KAIST, GIST, DGIST, UNIST
 - -(3) 대학 : 과학기술정보통신부 감염병 관련 R&D 수행 대학
 - -(4) 병원 : 한국원자력의학원(원자력병원 포함)

- -(5) 전문/지원기관: 한국연구재단, 국가과학기술연구회
- -(6) 기업: 진단, 백신, 치료제 개발 기업
- (매뉴얼 상황 범위) ① 해외 신종·원인불명·재출현 인체·동물감염병의 국내 유입 및 확산 ② 국내 신종·원인불명·재출현 인체·동물감염병의 발생 및 확산 ③ 기타 위기 유형에 준하는 사항으로서 감염병 전문가회의에서 국가 감염병 위기 대응이 필요하다고 판단하는 경우
- (상황 단계별 주요활동) 감염병 발생 상황을 평시, 발생, 관심, 주의~심각 4단계로 구분하고, 인체감염병, 동물감염병 구분에 따른 핵심 활동 추진

|그림 Ⅱ-28 | 감염병 위기대응 R&D 매뉴얼 상황별 핵심 활동

- (추진체계) 감염병 위기대응 R&D 전문가위원회를 중심으로 예측, 진단, 백신, 치료제, 전문/지원 기관 5개의 팀으로 구분
 - -(IPK 포지션) IPK는 감염병 위기대응 R&D 체계 내 백신팀, 치료제팀에 소속

|그림 Ⅱ-29 | 감염병 위기대응 R&D 매뉴얼 추진체계

■ (IPK 역할 - 백신팀) 백신팀 참여기관으로서 IPK는 생물안전 2,3 등급 시설 내 동물모델을 이용한 예방백신 유효성 평가, 면역증강제 스크리닝 추진

|표 Ⅱ-34|감염병 위기대응 R&D 매뉴얼 내 백신팀 기관별 역할

기관명	부서	역할
[총괄기관] 한국생명공학연구원	✓ 감염병연구센터✓ 국가영장류센터	✓ 총괄기관✓ 감염동물모델개발(소동물/영장류), 감염병 백신 개발, 백신 효능 평가
한국화학연구원	✔ CEVI 융합연구단	✔ 바이러스 유전체 분석, 항원 제작, 감염동물제작, 동물실험, 백신효능평가
한국파스퇴르연구소	✔ 바이러스면역팀	✓ 생물안전 2,3등급 시설내 동물모델 이용 예방백신 유효성 평가, 면역증강제 스크리닝
안전성평가연구소	✓ 전북분소, 첨단독성연구본부	✔ 백신에 대한 효능평가, 안전성평가
한국원자력의학원	✓ 의생명브릿지센터, 임상시험센터	✔ 백신 임상시험
한국과학기술원 (KAIST)	✔ 의과학대학원	✓ 신종 코로나바이러스 예방 백신 신속 백신 개발 플랫폼 범용 코로나바이러스 백신 플랫폼

■ (IPK 역할 - 치료제팀) 치료제 팀 내 IPK는 보유한 약물재창출용 화합물 라이브러리 활용 및 타겟프리 기반 신약 스크리닝 시스템 운영

|표 Ⅱ-35|감염병 위기대응 R&D 매뉴얼 내 백신팀 기관별 역할


 기관명	부서	역할
[총괄기관] 한국화학연구원	✓ 감염병제어기술연구단	✓ 총괄기관
한국파스퇴르연구소	✓ 인수공통바이러스연구팀, 신약스크리닝그룹	✓ 약물재창출용 화합물 라이브러리 보유, 신약스크 리닝 시스템 구축(타깃 정보 없이 세포 이미지기 반 스크리닝 가능)
한국한의학연구원	✔ 임상의학부	✔ 천연물 기반 감염병 치료제 후보물질 개발
한국생명공학연구원	✔ 감염병연구센터, 기능성 바이오소재연구센터, 국 가영장류센터	✓ 신변종 감염병 치료제 후보물질 개발, 감염병 동물모델 개발, 동물모델 활용 효능평가 지원
안전성평가연구소	✓ 예측독성연구본부, 첨단 독성연구본부, 전북분소	✓ 의약품 안전성 예측 기술 개발, 효능평가 및 안전 성 평가
한국원자력의학원	✓ 의생명브릿지센터, 임상 시험센터	✓ 표적지향적 약물 스크리닝 모델 및 비임상 검증, 치료제임상시험, 치료제 C14 이용 비임상시험
KAIST	✓ 실험동물센터, 생명과학과, AI대학원	✔ 바이러스 치료 후보물질 개발
광주과학기술원	✔ 생명과학부 인공지능연구소	✔ AI 기반 분자설계 및 항바이러스제 개발
대구경북과학기술원	✔ 핵심단백질자원센터	✔ 인공단백질 디자인, 엑소좀 기반 치료제 개발
울산과학기술원	✓ 신약·의료기술개발 연구 센터, 게놈산업기술센터	✔ AI 기반 바이러스 복제 억제, 바이러스 치료표적 발굴

4. 해외 유사기관 운영 사례 조사(벤치마킹)

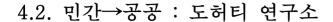
4.1. 민-관 협의체 : READDI

가. 개요

- READDI*는 노스캐롤라이나대학교와 여러 연구기관들이 항바이러스제 개발을 위해 설립한 연구협의체로, 대유행 가능성이 높은 바이러스를 타겟
 - * READDI: The Rapidly Emerging Antiviral Drug Development Initiative
 - (목표) 코로나·플라비·알파(토가) 등 3개 계열 바이러스에 적용할 범용 치료제 후보물질 5가지를 발굴하고, 5년 안에 임상1상까지 종료
 - (구성 및 역할) 대학-재단-정부기관-자선투자자-제약사 간 협력을 통한 치료제 후보물질 발굴-임상연구 프로젝트 수행
 - -(타겟발굴) 자선투자자 기금으로 새로운 항바이러스제에 대한 타겟물질 발굴
 - * (주요 참여자) 대학, 재단, 투자자(기부)
 - -(타겟검증) 타겟물질에 대한 검증 및 분석(벨리데이션)
 - * (주요 참여자) 대학, 재단, 정부, 투자자
 - -(유효물질 발굴 및 비임상연구) 검증된 타겟에 대한 유효성 확인을 통해 후보 물질을 선별하고 시험관 실험, 동물실험 등 비임상연구 수행
 - * (주요 참여자) 대학, 재단, 정부, 투자자, 제약사
 - -(임상 1상) 규제 및 제조 문제를 총괄하여 임상 1상을 통해 안전성 및 효능 평가 수행
 - * (주요 참여자) 제약사

|그림 Ⅱ-30 | 글로벌 약제 내성균 치료 항생제 개발 현황

나. 공동·협력 연구 현황


- READDI는 CEPI의 치료제 로드맵 계획에서 항바이러스제 임상 1상 개발을 위한 저분자 항바이러스 치료제 개발 임무를 수행 중
 - * CEPI : Coalition for Epidemic Preparedness Innovations(감염병대비혁신연합)
 - CEPI는 신종감염병 대유행을 막기 위한 백신 개발·확보를 위해 주요 기관을 지원하며, 백신 및 치료제 개발 로드맵을 수립
 - 치료제 부문에서 2026년까지 우선순위가 높은 바이러스 계열 중 임상 1상 연구를 완료한 25개의 저분자 항바이러스 후보물질 개발을 목표로 하며, READDI는 '26년까지 후보물질 발굴 계획에 참여
 - READDI는 코로나바이러스, 플라비바이러스, 알파바이러스 등 5가지 광범위 저분자 화합물 항바이러스제를 개발
 - 임상시험 단계에서 항바이러스제의 스케일 업 및 보급을 위한 '웜 베이스' 제조계획 수립
 - ※ 제조업체와의 협력을 통해 새로운 바이러스가 출현하기 전 후보물질을 위한 임상 2, 3상 시험을 설계하고, 효능테스트 시행 예정

| 표 Ⅱ-36 | CEPI '100일 전략(100 Days Mission)' 치료제 로드맵 제안(안)

권고사항	연도별 로드맵					키즈 모표
전고사망	2022	2023	2024	2025	2026	최종 목표
	WHO, CEP	I, 연구기반 제약		브(INTREPID, R	READDI)	
전염성 호흡기 병원체를 대상으로 항체 요법 및 프로토타입 항바이러스 개발	(WHO, CEPI) 프로토타입 항바이러스제 개발 가속화 우선순위 바이러스계열 (virus families) 발굴 (INTREPID) 고품질 저분자 항바이러스제 후보 10종 개발	(INTREPID, 기업) 합의된 우선순위 20개 대상 항바이러스 후보 개발	(INTREPID, 기업) 우선순위 25개 대상 항바이러스 후보 개발	(INTREPID, 기업) 우선순위 25개 대상 항바이러스제 후보 임상 1상 진행	25개 우선순위 (호흡기) 바이러스 계열을 (virus families) 대상으로 지분자 항바이러스제 후보 확보 (임상 1상 완료)	100일 이내 조기 개입이 가능한 초기 치료요법 구축

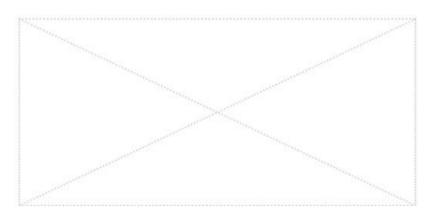
기구기회	연도별 로드맵					키즈 ㅁㅠ
권고사항	2022	2023	2024	2025	2026	최종 목표
	(READDI) 우선순위 바이러스 계열 대상 광범위 항바이러스 타겟 발굴	(READDI) 항바이러스 선도물질 화합물을 전임상 개발 추진	(READDI, INTREPID, 기업 + 파트너) 후기 전임상 및 초기 임상 개발 시작, 임상시험계획 수립	(READDI, INTREPID, 기업 + 파트너) 임상 1상을 통해 저분자 항바이러스 후보 식별, 임상 2/3 시험계획 및 웜베이스 제조계획 수립		
	치료제 포럼 및 민간협력		단일 클론	단일 클론	단일 클론	
단일 클론 항체 및 기타 치료제 제조방식 단순화 및 저가화에 투자	단일 클론 항체 향상 (열역학적 안정성, 투여량 등 향상)	투자가능 단일 클론 항체 타겟 확보	항체 생산비용을 그램 당 75\$ 미만으로 감소	항체 생산비용을 그램 당 50\$ 미만으로 감소	항체 생산비용을 그램 당 25\$ 미만으로 감소	
	Disease X 대응 항바이러스제 개발 * (예시) siRNA, 스테이플 펩티드, inhibitor 추론	풍토병의 항바이러스 플랫폼 기술 확보	풍토병의 항바이러스 플랫폼 기술 효과입증		Disease X 대상 신속 프로그램 가능한 항바이러스 기술 확충	
(CEPI) 국제 치료제 R&D 개발 및 조정 체계에서 CEPI 역할 강화	INTREPID, READDI, Hover Group, Wellcome, BMGF 등 치료제 포럼 운영	향후 마일스톤	향후 마일스톤 확정 후 CEPI에 의해 보고			
	치료제에 대한 전략적 목표와 투자 계획을 제시	(INTREPID) 아카데미 → 산업계 신속한 중개연구			+ 국제 협력 및 치료제 R&D 투자 개선	

^{** (}INTREPID) 신흥산업 주도 컨소시엄 emerging industry-led consortium * 자료 : CEPI(2021)

가. 개요

- 피터 도허티 감염 및 면역 연구소(Doherty Institute)는 멜버른 대학교와 로열 멜버른 병원이 공동으로 설립한 연구소
 - (연구분야) 4개의 연구분야 및 집중 지원 영역으로 구성

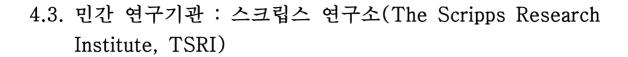
|표 Ⅱ-37|국내·외 세포치료제 주요 플레이어


연구 테마	내용
면역학	새로운 백신과 치료제의 발견과 개발
바이러스성 감염병	HIV, 바이러스 감염, 인플루엔자, 뎅기열, 지카 등 신종 감염증에 중점을 두고 바이러스 감염증의 연구, 진단 및 치료
항생제 내성 및 의료 관련 감염	감시, 분석, 임상 및 발병 관리
숙주-병원체 상호 작용 (Host-Pathogen interactions)	말라리아, 장내 감염, 아르보바이러스, 결핵에 중점을 둔 다양한 숙주 병원체 관련 질병의 연구, 진단 및 치료

자료: 도허티 기관 전략 계획 2022-2027

- (연구 전략) 기존 백신·치료제. 임상연구 등과 함께 글로벌 팬데믹에 따른 전략 수립
 - (팬데믹 대비 및 대응) 지속적인 팬데믹 위협으로부터 정부 요구에 맞춘 신속 대응역량 구축
 - -(백신 및 치료제) 민간 협력을 통하여 백신 및 치료제 중개연구 지원
 - -(읶상연구) 효과적인 임상연구를 위한 인프라, 프로세스 및 인력지원
 - (계산과학(Computational Science)) 감염·면역학에서 필요한 계산과학 가속화 및 데이터, 멀티-오믹스 연구
 - -(국제 헬스) 글로벌 공중보건 역할 및 기여도 향상을 위해 혁신적인 학제 간 연구를 수행하고 건강 및 지역 전체 역량 강화 프로그램 추진
 - -(호주 국가 감염병 연구) 국가 감염병 생태계 협력 기여

나. 공동·협력연구 현황

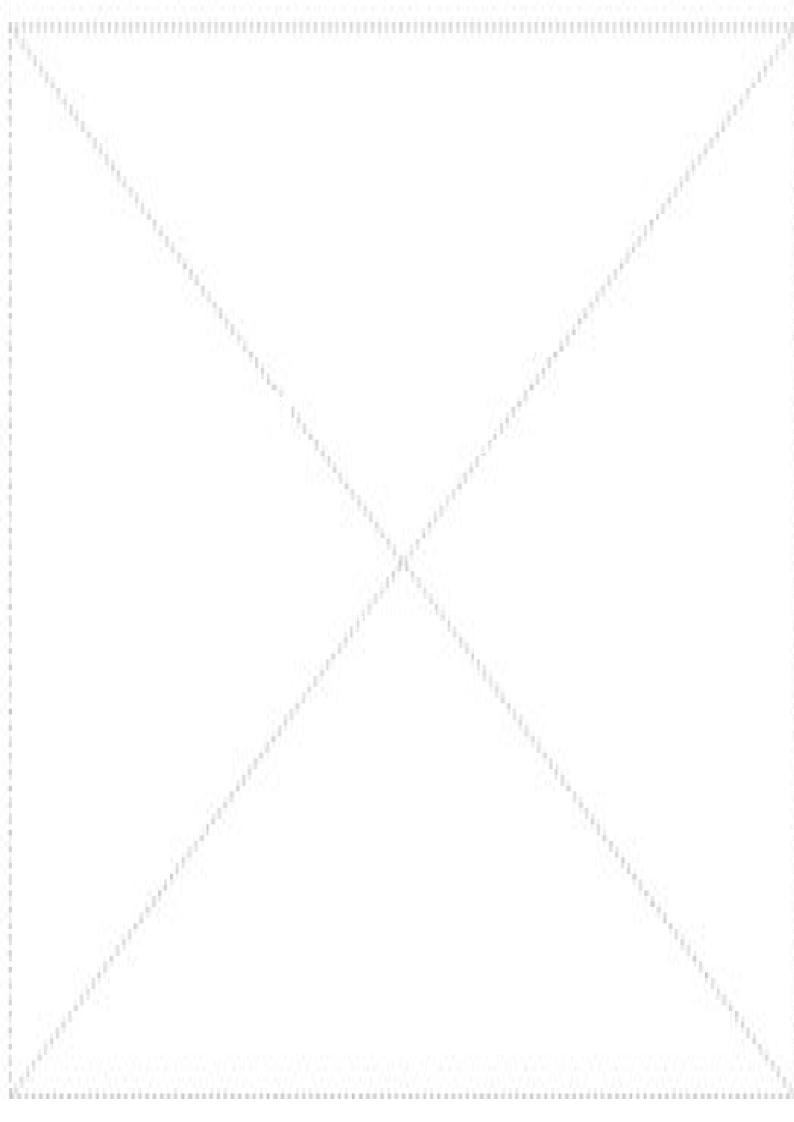

- 도허티 연구소 내에는 빅토리아 감염병실험실과 멜버른 대학, 멜버른대학 병원이 함께 위치하고 있어 감염병에 대한 기초연구부터 역학, 중개, 임상 연구까지 연결가능
 - 도허티연구소는 기초 연구 역량 바탕, 공공성이 강조되는 연구분야*를 중심으로 지역 기반의 임상연구 기관으로서 역할 확대
 - * HIV, 바이러스성감염, 인플루엔자,뎅기열, 말라리아, 기생충 등

자료 : 도허티 기관 전략 계획 2022-2027

|그림 Ⅱ-31 | 도허티 연구소 파트너쉽 지도

- 특히, 이번 코로나 팬데믹에서 신속하게 연구에 돌입하여 적극적 대응을 하고 있으며, 국내 기관과의 공동·협력연구 성과를 강화하고 있는 상황
 - -('20년 12월) ㈜종근당. 'ASCOT'를 통해 나파벨탄 임상 3상 계획 승인
 - ※ 도허티연구소는 ASCOT(Australasian COVID-19 Trial, 코로나19치료제글로벌임상프로젝트) 주관기관
 - -('22년 6월) 한국파스퇴르연구소·도허티연구소, 글로벌 감염병 대비대응 공동 전략 심층 논의
 - ※ 항생제 내성·코로나19·독감·B형간염 등 감염병 공동대응 전략 수립
 - -('22년 10월) 한국보건산업진흥원, 한-호주 바이오헬스교류단 운영
 - ※ (한) 국가임상시험재단, 신변종감염병mRNA백신사업단 (호주) 피터도허티연구소, 머독어린이 연구소 협력 백신·치료제분야 공동연구 추진을 위한 네트워크 확대

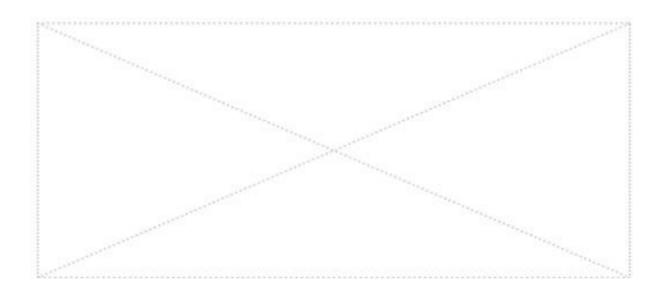
가. 개요


- TSRI는 융합기술을 통한 생명의학 기초 연구수행 및 기반 기술 확보를 위한 전 세계에서 제일 큰 비영리 민간 생의학연구소
 - (기관역할) 생명체의 근본적인 과정을 이해하고자 하는 기초 생체의학 연구를 위해 설립되었으며, 융합기술을 통한 기초 연구수행 및 기초 기반 기술 확보를 위한 전략 마련
 - (주요성과) 고령(노화) 질환, 자가면역질환, 암, COVID-19 치료제, 심장질환, 감염병, 신경장애 및 다양한 희귀질환 등에 관한 연구성과 창출
- 전임상, 초기임상까지 자체적으로 진행해 신약개발 역량을 갖춘 중개연구중점 연구소가 되기 위한 전략수립
 - 중개연구 중심 연구를 위해 캘리포니아 의과학연구소(Calibr)와 합병, 기초연구와 중개연구의 강점을 결합하여 기초과학 기반 자체 파이프라인 개발
 - Calibr은 재단, 연방·주 정부, 제약 산업 파트너를 포함하는 조직과 제휴 연구 수행 2.5억 달러 이상의 프로젝트와 출연금을 통해 혁신적 의약품 발견 노력 수행
 - 14,000개의 약물 데이터베이스 'ReFrame'을 활용한 국제적 협력(독일 등) 연구 수행

나. 공동·협력연구 현황

- TSRI 후원으로 Scripps CHAVD 컨소시엄을 운영하여 HIV/AIDS 백신 개발을 지원하고, 백신개발에 가장 유용한 면역물질과 치료요법을 개발
 - 백신 임상, 생산을 위한 그룹과 과학연구 그룹을 구분하여 운영
 - 美국립아카데미, MIT, Emory Univ., Univ. of Southampton, 국제에이즈백신연합 (Int. AIDS Vaccine Initiative), Karolinska Institutet 등 다국가, 다기관 협력 컨소시엄

외부환경 분석 종합


- > 코로나19 이후 WHO, CEPI 등 국제기구는 차기 감염병 신속 대응을 목표로 협력기반 구축 및 백신·치료제 개발의 신속화 전략(사전비축& 신속화 프로토콜 확보)에 집중
 - → 국내 또한 국가 신속 백신·치료제 개발 프로토콜 확립을 위한 준비 중으로 IPK가 관련 국가 수요에 기여할 수 있는 방안 검토 필요
- ▲I기술, 빅데이터, 첨단 자동화 기술 등 융합기술 기반의 기존 치료제 개발 프로세스 고도화(정밀·신속) 및 신규 모달리티 플랫폼 확장 시도 → 빅데이터, AI 기술의 접목을 통한 IPK의 기존 역량 고도화 방안을 마련하고, 이를 수행하기 위한 중장기적 필요 자원과 계획 필요 → 현재 인프라 및 연구역량을 기반으로 확장 가능한 새로운 모달리티 영역을 검토하고, 중장기 전략에 반영 가능성 확인 필요
- > 코로나19로 인한 감염병 R&D 중요성에 대한 국가적 관심도↑에 따른 투자 환경 등 긍정적인 연구개발 환경 조성
 - → 국내 연구기관, 기업 등의 관심과 수요를 기회로 삼아 IPK의 강점과 연계한 역할 재정립으로 미래 예산 확보 및 기관 위상 제고 발판 마련 필요 → 특히, 국내 감염병 연구개발 생태계 및 위기 대응 체계 내 부여된 역할은 외부에서 인정하는 IPK의 강점 영역(스크리닝기술)으로 지속적인 역량 고도화를 통한 국가 수요 대응과 기관 정체성 이미지로 활용 필요
- ➤ 국제적으로 Open innovation 중심의 협력적 연구 생태계를 구축하고 있으며, 이를 통한 연구개발의 신속성, 비용절감 등의 효율성 확보 강조
 → 현재 인프라 및 연구역량을 기반으로 확장 가능한 새로운 모달리티 영역을 검토하고, 중장기 전략에 반영 가능성 확인 필요

1. IPK 설립 배경 및 임무

1.1. 설립배경 및 연혁

- 2004년 설립된 IPK는 프랑스 파스퇴르 연구소와의 협약 기관으로 아·태 지역 감염병 연구 허브 및 글로벌 파트너 역할 수행 중
 - 세계적인 수준의 해외 연구기관 유치를 통해 국내 신약 개발 및 R&D 관리 분야의 국가적 역량 선진화를 위해 설립
 - 전 세계 25개국, 33개소 연구소로 구성된 네트워크를 활용하여 신종 감염병 등에 대한 신속한 연구협력을 통해 글로벌 연구 역할 수행
- 출범 이후 국내·외 협력 네트워크 구축, 감염병 치료제 연구 관련 기술개발 등 핵심 성과들을 도출하며, 감염병 관련 핵심 연구기관으로 성장
 - 국내 최초 BL3 연구시설 운영('08년), 결핵 신약 후보 물질 개발('13년), 코로나19 후보 약물 발굴('20년) 등 감염병 주요 핵심 기관 중 하나로 성장

|그림 Ⅲ-1 | IPK 주요 History

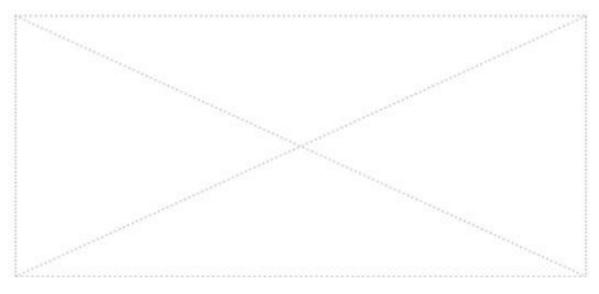
|표 Ⅲ-1|IPK 연도별 주요 연혁

2003	12월	■ 프랑스 파스퇴르연구소-한국과학기술연구원(KIST), 한국파스퇴르연구소 설립 협정체결 (과학기술부 [현, 과학기술정보통신부] 지원)				
2004	4월	■ 한국파스퇴르연구소 설립 (한국과학기술원 내)				
		■ 1대 소장 울프 네바스 박사(Dr. Ulf Nehrbass) 취임				
2008	5월	■ 국내 최초 생물안전3등급(BL3) 연구시설 국가 인증 (한국질병관리본부 인증)				
	7월	■ 스핀-오프 바이오 벤처기업 (주)큐리언트(Qurient Inc.) 설립				
2009	4월	■ 경기도 판교테크노밸리 내 독립 건물로 이전				
	11월	■ 교육과학기술부 '연구실 우수안전관리기관 포상' 장관표창 수상				
2010	3월	■ (주)큐리언트에 결핵 치료제 후보물질 Q203 기술이전				
	12월	■ 경기도 '건축문화상' 은상 수상				
2011	Ι	■ DNDi '올해의 파트너십(Partnership of the Year)' 수상				
2013	8월	● 약제내성 결핵 치료제 혁신 신약 후보 물질 (Q203) 개발 ※ Q203: 다제내성 결핵(MDR-TB) 및 광범위내성결핵(XDR-TB)에 뛰어난 치료 효능을 보이는 국내 혁신 신약(First-in-class) 후보 물질. (Pethe, K., Bifani, P., Jang, J. et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19, 1157-1160 (2013))				
	9월	■ 미래창조과학부 '생물안전 know-how contest' 최우수상 수상 (미래부 장관상)				
	11월	■ 보건복지부 '생물안전 유공기관 장관표창' 수상				
2014	5월	■ 과학기술연합대학원대학교(UST) 캠퍼스 지정 ■ 2대 소장 하킴 자바라 박사(Dr. Hakim Djaballah) 취임				
	7월	■ 미래창조과학부 '국가연구개발 우수성과 100선' 선정 (Q203 개발)				
2015	12월	■ 약제내성 결핵 치료용 화합물(Q203) 미-FDA 희귀의약품(Orphan Drug) 지정 (2015년 7월 미-FDA 임상 1상 승인)				
2016	2월	■ (주)큐리언트(Qurient Co., Ltd.) 코스닥(KOSDAQ)에 상장				
	5월	■ DNDi '올해의 프로젝트 상(DNDi 's Project of the Year)' 수상				

자료 : 한국파스퇴르연구소 홈페이지

1.2. IPK 주요 역할 및 임무

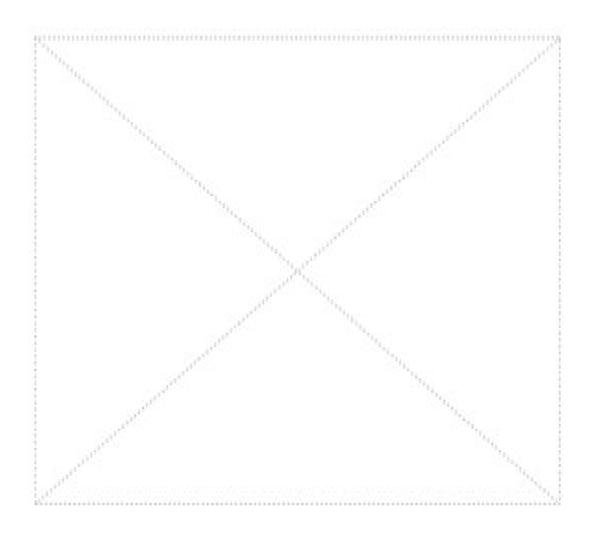
- IPK는 아·태 지역의 공중보건을 위한 거점 연구소라는 비전 아래, 연구, 교육, 공중보건, 국제협력 부문에서 미션과 전략을 선포하고 운영
 - (기관 비전) 과학적 우수성을 향해 정진하고 파스퇴르 네트워크의 아시아·태평양 지역 거점 연구소로서 국제적인 공중보건 파트너들과 연구협력을 강화하여 글로벌 공중보건 증진에 기여
 - (연구) 스크리닝 플랫폼 기반의 치료와 예방을 위한 우수 후보물질 도출 및 새로운 기전 규명을 촉진
 - (교육) 차세대 과학자 및 연구자 양성, 다음 세대 연구정신 함양을 통한 국가 지식경제 발전에 기여
 - (공중보건) 감염병 대비·대응을 위한 국가·세계적 노력에 일조
 - (국제협력) 파스퇴르 네트워크의 아·태지역 허브로서 신약개발 견인, 한국과 글로벌 과학 커뮤니티 징검다리 역할 수행


기관 비전

한국파스퇴르연구소는 과학적 우수성을 향해 정진하고 파스퇴르 네트워크의 아시아·태평양 지역 거점 연구소로서 국제적인 공중보건 파트너들과 연구협력을 강화하여 글로벌 공중보건 증진에 기여

	연구	교육	공중보건	국제협력
기선과 전략	생물학·화학·IT 기술을 결합한 혁신적인 이미지·세포 기반 스크리닝 플랫폼을 활용해 질병의 치료와 예방을 위한 우수한 후보물질을 도출하고 새로운 기전 규명을 촉진	차세대 과학자 및 연구자를 양성하고, 다음 세대에게 혁신적인 연구정신을 북돋아 줌으로써 한국 지식경제에 공헌	한국파스퇴르연구소 는 감염병 대비·대응을 위한 국가적 및 세계적 노력에 일조	한국파스퇴르연구소 는 파스퇴르 네트워크의 아·태지역 연구 허브로서 신약개발을 견인하는 중추적 역할을 수행하며, 한국과 글로벌 과학 커뮤니티를 연결하는 가교를 제공

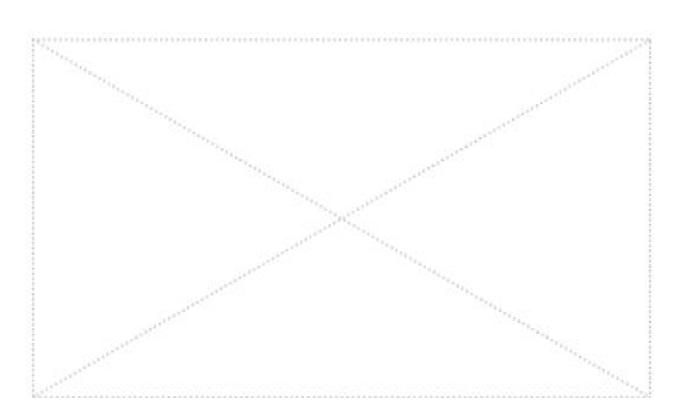
|그림 Ⅲ-2 | IPK 기관 비전 및 미션


- 특히 IPK는 신속한 치료 후보물질 발굴(Target free기반의 약물재창출 스크리닝 플랫폼, 동물실험 등), 국내외 임상 협력, 상용화 촉진(기업설립, 스타트업 육성) 사업 등에서 주도적 역할 수행
 - (감염병 치료제 연구) 코로나19 약물 재창출 후보물질 효과검증 등 초고속 대용량 스크리닝 플랫폼 등 감염병 특화 활용 연구 진행
 - ※ (기초) 내부 화합물 라이브러리(26만종) 등을 활용 → 초고속 대용량 스크리닝 및 작용기전 연구
 - (연구시설 활용) 국내 최초 BL-3 시설 등 보유를 통해 '22년 현재 <바이러스 연구센터> 공동 운영기관 중 활용 가능 인프라 최대 보유
 - ※ 파스퇴르(연) : 현재 BL3 4실/ABL3 4실 보유 → '22년 확장 후 오픈랩 운영 예정
 - ※ 바이러스기초(연) : 현재 실험실 없음 → '22년 BL3 1실/ABL3 1실 완공 예정
 - ※ 스크립스(연): 현재 실험실 없음 → '23년 상반기 BL3 1실 완공 예상(_'21.예정처)
 - (글로벌 거점) 파스퇴르 국제 네트워크 (PN)를 통한 세계적 감염병 전문 네트워크 특화로 프로그램, 플랫폼 등을 통한 강화
 - -10여개 국의 다국적 출신 연구진을 통해 선진 기술과 국내 주요 핵심 기술역량 간의 융합 시너지 효과 창출
 - -또한, IPK는 파스퇴르 국제 네트워크인 PN(Pasteur Network)의 멤버로 네트워크 내 초기 신약개발 연구를 선도

|그림 Ⅲ-3 | 글로벌 파스퇴르 네트워크

2. IPK 조직구조 및 인력 분석

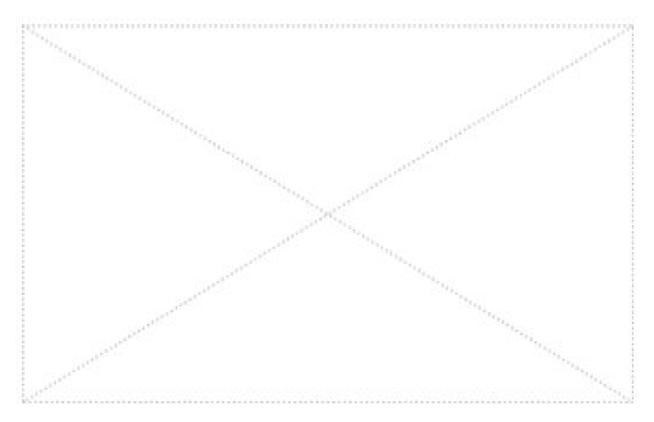
2.1. 조직구조 및 업무



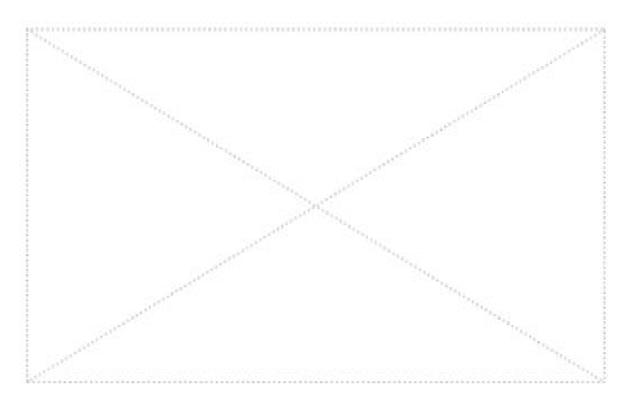
|그림 Ⅲ-4 | IPK 조직도

■ IPK 조직은 크게 기초연구본부, 중개연구본부, 행정본부로 구성

- (기초연구본부) 기초연구본부는 질병과 병원체에 대한 기초연구 및 분석법 (Assay) 구축, 후보물질의 약물 표적(target), 작용 기전(MoA) 규명 등의 연구를 수행하며 총 7개의 팀으로 구성
 - -(① 인수공통바이러스연구팀) 코로나19, 지카, SFTS 등 신종바이러스 기전 연구 및 치료제 개발에 관한 연구 수행


- -(② 바이러스면역연구팀) 바이러스 감염과 백신의 면역학적 원리에 대한 연구
- -(③ 응용분자바이러스연구팀) 간염 등 바이러스와 숙주 간의 상호작용 규명 및 치료제 개발에 관한 연구 수행
- -(④) 결핵연구팀) 결핵 치료 후보물질 도출 및 효능 평가 기술 개발
- -(⑤) 항생제내성연구팀) 세균 특성 및 내성기전 연구를 통한 새로운 항균물질 개발
- (⑥ 숙주·기생충연구팀) 리슈만편모충 등 워충에 의한 감염병 메커니즘 연구 및 치료제
- (⑦ 첨단바이오의학연구팀) 간암을 중심으로 조기진단, 치료제, 종양 연구모델 개발 등 수행

|그림 Ⅲ-5 | 기초연구본부 팀 구조 및 주요 기능


- (중개연구본부) 중개연구본부는 스크리닝을 통한 후보물질 발굴, 물질 최적화, 동물실험 등 기초연구 성과를 실제 신약 후보물질 개발로 발전시키는 연구를 수행하며 총 5개 팀으로 구성
 - -(① 신약스크리닝팀) 첨단 이미징 기술 개발 및 이미지 기반 스크리닝 플랫폼 운영
 - -(②) 의약화학팀) 후보물질 최적화를 위한 화합물 분석 및 설계

- -(③ 동물실험팀) 동물모델을 활용한 질병·치료 기전 및 신약개발을 위한 동물실험 지원·수행
- -(④ 기술개발플랫폼팀) 스크리닝 플랫폼 고도화를 위한 첨단 이미징 기술개발
- -(⑤ 연구실지원팀) 연구소 내 핵심장비 유지와 품질관리 수행 및 연구활동 지원

|그림 Ⅲ-6 | 중개연구본부 팀 구조 및 주요 기능

- (행정본부) 행정본부는 IPK의 인사, 재무, 신규기획 등 경영 관련 업무를 총괄 하는 본부로 산하에 총 6개 팀으로 구성
 - -(① 전략기획팀) IPK 중장기적 플랜 수립, 연구관리, 홍보, 행사 운영 관리
 - -(② 총무인사팀) 채용, 인사, 복지 등 기관의 인사업무 및 총무 업무 수행
 - -(③ 재무팀) 세금, 자금 관리 등 기관 재무 업무 수행
 - -(④) 구매팀) 연구장비, 재료 등의 발주, 결제 등 기관 관련 구매 업무 수행
 - -(⑤ 안전팀) 산업, 생물, 위험물, 제한구역 출입 등 안전 관련 업무
 - -(⑥ 시설팀) 시설 공사, 운영, 유지보수 등에 관한 사항



|그림 Ⅲ-7 | 행정본부 팀 구조 및 주요 기능

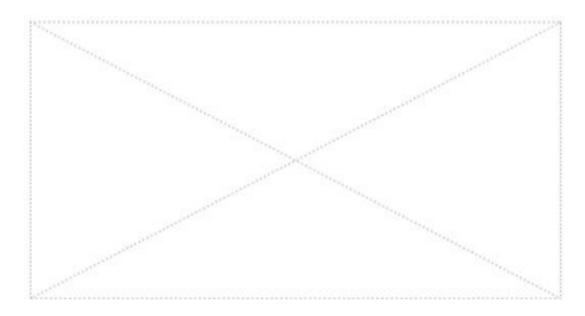
- 그 외 기타 조직으로는 생물자원은행이 있으며, 특정 프로젝트를 진행을 위한 TF 조직을 유연하게 구성·운영 중
 - (생물자원은행) IPK 내 고위험 병원체 바이오인프라(BL3, ABL3 등)를 기반으로 고위험·신변종 감염병 병원체 및 관련 인체유래물자원에 대한 수집·표준화를 통해 연구 커뮤니티에 제공
 - -(감염병 특화 인제자원은행 설립) 고위험 바이러스/항원/항체/핵산 등 인체유래물을 수집·보존하여 산·학·연 감염병 연구커뮤니티에 제공
 - -(수요자 맞춤 병원체자원 컬렉션 구축) 신·변종 감염병 연구를 진행하는 연구자의 니즈 맞춤형 병원체 수집 및 분양
 - -(감염병 특화 표준화된 연구소재 생산) 정확성·편의성·경제성이 뛰어난 감염병 진단기술 개발 촉진을 위한 고품질 표준 연구소재 제공 등
 - (TF팀) IPK 특정 프로젝트의 효과·효율적 추진을 위한 단기적 TF팀을 유연하게 구성·운영, 현재 바이오코어 TF팀*이 운영 중
 - -(現 바이오코어 TF팀 구성) 바이오 Core Facility 구축 사업 프로젝트의 효과적 수행을 위한 시설·장비 전문인력으로 구성된 TF

> IPK 조직 간 업무 추진 프로세스

■ 치료제·신약 개발에 반드시 수반되는 과정을 기초연구-중개연구로 구분하고, 기초·기전연구/선도물질 도출/비임상실험과정에서 상호 협력 프로세스 구축

|그림 Ⅲ-8 | 행정본부 팀 구조 및 주요 기능

♥ (시사점) 임기제 리더 외 장기적 리더십 부재로 조직 발전·고도화를 지속적으로 이끌어가고, 자원의 효율적 배분·의사결정을 위한 리더십 발휘 한계 → 부서장급의 중간 리더 확보 필요성에 대한 검토 필요



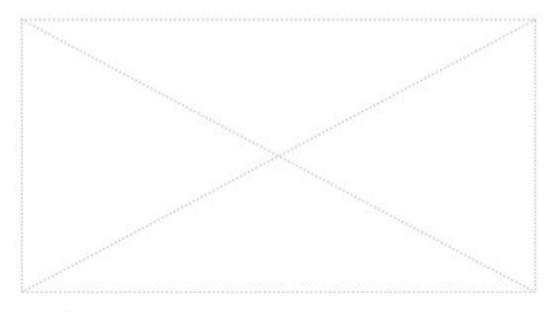
|그림 Ⅲ-9 | IPK 조직 구조 특성 및 한계

2.2. IPK 인력 현황

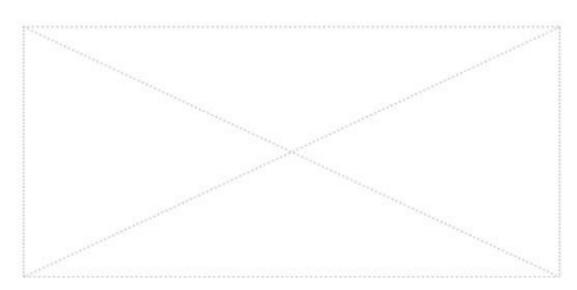
가. 최근 5년 인력 현황

- IPK 인력은 최근 5년('18~'22) 기준 '18년 84명 규모에서 '19년 소폭 감소가 있었으나 '22년 현재 기준(7월) 102명 규모로 총 18명(CAGR 5.0%) 증가
 - IPK 인력은 '18년 기준 84명 규모에서 '19년에는 74명으로 10명 감소
 - 이후에는 지속적인 증가 추세로 '22년 기준 102명으로 '18년 대비 연평균(CAGR) 5.0%의 증가율로 총 18명 증가

|그림 Ⅲ-10 |최근 5년 ('18~'22) IPK 인력 수 추이


|표 Ⅲ-2 | 최근 5년 ('18~'22) IPK 인력 수 추이

(단위 : 명)


구분	2018	2019	2020	2021	2022	CAGR
IPK 전체 인력 수	84	74	82	97	102	5.0%

나. 본부별 인력 현황

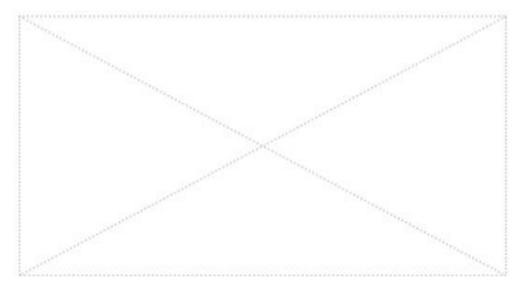
- 최근 '22년도 기준으로 기초연구본부 39명(38.2%)인력이 가장 많았으며, '18년 대비 '22년 추이는 기초연구본부 인력 증가가 눈에 띄며, 중개연구는 다른 본부와 달리 인력 수가 감소
 - (본부별 비중) '22년 기준, 기초연구본부는 38.2%(39명)로 가장 많은 비중을 차지하며, 중개연구본부는 30.4%(31명), 행정본부는 31.4%(32명)을 차지
 - (기초연구본부 추이) '18년 29명에서 '22년 39명으로, 5년 사이 10명의 인력이 증가하였으며, '19년 이후 지속 인력 수 증가
 - 기초연구본부 인력 비중은 '20년도 이후 IPK에서 가장 많은 비중을 차지
 - (중개연구본부 추이) '18년 33명에서 '22년 31명까지 5년 사이 2명의 인력이 감소했으며, '20년 이후 해마다 증감을 반복
 - 중개연구본부 인력은 '18년~'19년에는 IPK에서 가장 많은 비중을 차지하였으나, '20년 타 본부 인력 증가에 따른 비중 측면이 계속 감소
 - (경영&행정본부 추이) '18년 22명에서 '22년 32명까지 5년 사이 10명의 인력 이 증가하였으며, '19년 이후 지속 인력 수 증가
 - 경영&행정본부 인력 비중은 최근 5년 대부분 가장 낮은 비중을 차지하였으나,인력이 지속 증가하며 최근 '22년에는 중개연구보다 높은 비중 차지

|그림 Ⅲ-11 | 최근 5년 ('18~'22) IPK 본부별 인력 수 추이

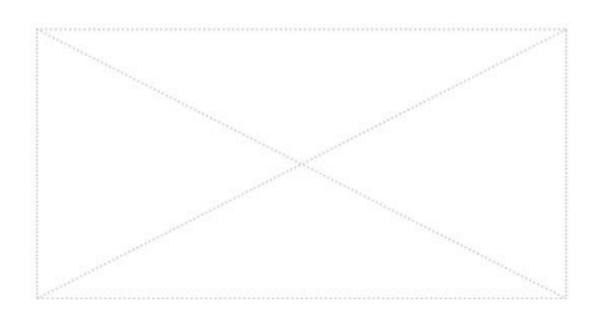
|그림 Ⅲ-12 | 최근 5년 ('18~'22) IPK 본부별 인력 비중 추이

|표 Ⅲ-3 | 최근 5년 ('18~'22) IPK 본부별 인력 수 및 비중 추이

(단위 : 명)


구분	į.	2018	2019	2020	2021	2022	CAGR
기초	연구본부	29	25	31	37	39	7.7%
	비 중	34.5%	33.8%	37.8%	38.1%	38.2%	
중개	연구본부	33	29	29	32	31	-1.6%
	비 중	39.3%	39.2%	35.4%	33.0%	30.4%	
75	영&행정	22	20	22	28	32	9.8%
	비 중	26.2%	27.0%	26.8%	28.9%	31.4%	
	합 계	84	74	82	97	102	5.0%
	비 중	100.0%	100.0%	100.0%	100.0%	100.0%	

자료 : IPK 내부자료


(시사점) 연구인력 비중은 감소(중개연구부)하는 반면, 행정·경영인력의 비중
 증가 → 행정·경영 인력의 전문화(BD 등 사업화 관련 전문화)와 동시에 우수
 연구인력 확보 노력이 필요할 것으로 예상

다. 학위별 인력 추이

- '22년 기준 학위별 인력은 석사가 44명(43.1%)로 가장 많았으며, 최근 5년 간 증가 추이는 학사 이하 인력 증가 8명으로 가장 많은 것으로 조사
 - (학위별 비중) '22년 기준, 석사인력이 43.1%(44명)로 가장 많은 비중을 차지하고 있으며, 박사인력 29.4%(30명), 학사 이하 인력 27.5%(28명) 순
 - (박사 추이) '18년 24명에서 '22년 30명으로, 5년 사이 6명의 인력이 증가하였으며, '20년 이후 '21년에 타 연도 대비 상대적으로 크게 증가
 - 박사인력 비중은 IPK 내에서 석사 인력 다음으로 비중이 높았으며, 최근 5년간 20% 후반에서 ~ 30% 초반 비율을 주로 나타냄
 - (석사 추이) '18년 40명에서 '22년 44명으로 5년 사이 4명의 인력이 증가했으며, '18년 이후 '19년에 큰 폭으로 감소한 이후 다시 증가한 것으로 조사
 - 석사인력은 최근 5년 간 IPK내 가장 많은 비중을 차지하고 있으며, 매년 40% 이상을 유지하고 있으나, '18년 47.6% 대비 '22년 43.1%로 일부 감소
 - (학사 이하 추이) '18년 20명에서 '22년 28명까지 5년 사이 8명의 인력이 증가 하여, 타 학위 대비 인력 수의 절대적 증가가 가장 많았음
 - 학사 이하 인력 비중은 최근 5년 대부분 가장 낮은 비중을 차지하였으나, 타 학위 대비 증가 비중의 증가 추세 유지

|그림 Ⅲ-13 | 최근 5년 ('18~'22) IPK 학위별 인력 수 추이

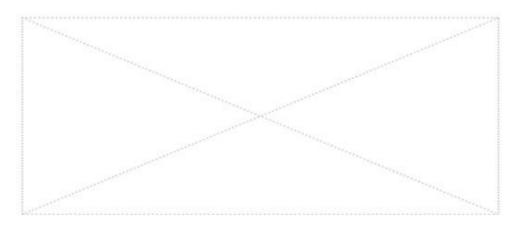
|그림 Ⅲ-14 | 최근 5년 ('18~'22) IPK 학위별 인력 비중 추이

| 표 Ⅲ-4 | 최근 5년 ('18~'22) IPK 학위별 인력 수 및 비중 추이

(단위 : 명)

구분	2018	2019	2020	2021	2022	CAGR
박사인력	24	23	25	31	30	5.7%
비중	28.6%	31.1%	30.5%	32.0%	29.4%	
석사인력	40	33	36	41	44	2.4%
비중	47.6%	44.6%	43.9%	42.3%	43.1%	
학사이하 인력	20	18	21	25	28	8.8%
비중	23.8%	24.3%	25.6%	25.8%	27.5%	
합계	84	74	82	97	102	5.0%
비중	100.0%	100.0%	100.0%	100.0%	100.0%	

자료 : IPK 내부자료


《시사점》R&D 과제 수주를 위한 박사급 인력 비중의 감소 추세 → 외부 R&D 수주에 따른 추가 인력을 확보하는 IPK 운영 구조상 박사급 인력 비중이 높아야이하 석사, 학사급 인력 확보 또한 가능하기 때문에 비중면에서 박사급 인력 비중이 높은 구조가 유리할 것으로 판단됨

3. IPK 연구과제 예산 및 성과 분석

3.1. IPK 연구과제 추진 현황

가. 최근 5년 연구과제 추진 현황

- IPK 수행 연구과제비는 최근 5년('18~'22) 기준 '18년 116.1억원(30건) 규모에서 '22년 기준 213.1억원(34건) 규모로 97.1억원(CAGR 16.4%) 증가
 - 최근 5년 IPK의 연구과제비 총 합계액은 717.3억원이며, 최근 연도인 '22년 기준 연구과제비 규모는 213.1억원
 - 연구과제비 규모는 '18년 116.1억원에서 '19년 소폭 감소(103.3억원)하였으나, 이후 연평균 16.4% 비율로 지속 증가 추세
 - 과제 수 기준으로는 최근 5년 연구과제 총 합계 건수는 165건이며, 최근 연도인 '22년에는 34건의 연구과제를 수행
 - 매년 30건 대 수준이며, '18년 30건에서 '22년에 34건으로 총 4건이 증가하며, 연평군(CAGR) 3.2% 증가

|그림 Ⅲ-15 | 최근 5년 ('18~'22) IPK 연구과제 추진 현황

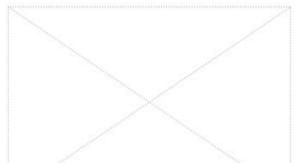
| 표 Ⅲ-5 | 최근 5년('18~'22) IPK 연구과제 현황 추이

(단위 : 억원, 건)

구분	2018	2019	2020	2021	2022	합계	CAGR
IPK연구과제비	116.1	103.3	125.3	159.6	213.1	717.3	16.4%
 IPK연구과제건수	30.0	30.0	33.0	38.0	34.0	165.0	3.2%

나. 본부별 연구과제 현황

- 최근 5년간 합계 기준 기초연구본부가 326.9억원(45.6%)으로 가장 많았으며, 이어 경영&행정(이하. 소장관할&기획) 연구과제가 268.4억원(37.4%) 순
 - (본부별 연구과제비 비중) '22년 기준, 소장관할&기획 연구과제비 비중이 57.4%(122.4억원)로 가장 많았으며, 기초연구본부 31.0%(66.1억원), 중개연구본부 11.6%(24.6억원) 순
 - (과제 수 기준 비중) '22년 기준, 연구과제수는 기초연구본부가 58.8%(20건)으로 가장 많았으며, 중개연구본부 32.4%(11건), 소장관할&기획 8.8%(3건) 순
 - (기초연구본부 추이) 기초연구본부 과제비는 '18년 기준 58.3억원으로 IPK 내가장 많은 비중(50.2%)을 차지, 이후 금액 면에서 연평균 3.2% 수준으로 점차 증가
 - 과제 수는 '18년 21건 대비 '22년 20건으로 1건 감소하였으나, 최근 5년 간 매년 20건 초반을 유지 중
 - (중개연구본부 추이) 중개연구본부 과제비는 '18년 기준 29.9억원으로 IPK 내 두번째로 높은 비중(25.8%)을 차지, 이후 '20년에 19억원 수준으로 감소 후 회복 중 과제 수는 '18년 7건 대비 '22년 11건으로 4건 증가
 - (소장관할&기획 추이) '18년 소장관할 연구과제비가 27.9억원 규모에서 '21년 부터 큰 폭으로 증가하며, '22년 122.4억원까지 증가
 - ※ 소장관할 연구비의 증가는 최근 큰 사업지원 예산인 바이러스 연구지원센터 지원 사업 97.6억원이 소장관할로 수주함에 따른 것으로 파악
 - 반면, 금액 대비 건수는 최근 5년간 모두 5건 미만으로 이는 큰 규모의 사업 예산을 IPK 기관 차원에서 연구소장 책임으로 계약을 진행하기 때문인 것으로 파악



| 그림 Ⅲ-16 | 최근 5년 ('18~'22) IPK 본부별 연구과제 추진 현황

<본부별 연구과제비 비중>

<본부별 연구과제 수 비중>

| 그림 Ⅲ-17 | 최근 5년 ('18~'22) IPK 본부별 연구과제 비중 현황

| 표 Ⅲ-6 | 최근 5년 ('18~'22) IPK 본부별 연구과제비 추이 및 비중

(단위 : 명)

구분	2018	2019	2020	2021	2022	합계	CAGR
기초연구본부	58.3	56.3	77.9	68.4	66.1	326.9	3.2%
비 중	50.2%	54.5%	62.1%	42.9%	31.0%	45.6%	
중개연구본부	29.9	20.6	19.2	27.7	24.6	122.0	-4.7%
비 중	25.8%	20.0%	15.3%	17.3%	11.6%	17.0%	
소장관할&기획	27.9	26.4	28.3	63.4	122.4	268.4	44.7%
비 중	24.0%	25.6%	22.6%	39.8%	57.4%	37.4%	
합 계	116.1	103.3	125.3	159.6	213.1	717.3	16.4%
비 중	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	

자료 : IPK 내부자료

| 표 Ⅲ-7 | 최근 5년 ('18~'22) IPK 본부별 연구과제 수 추이 및 비중

(단위 : 명)

구분	2018	2019	2020	2021	2022	합계	CAGR
기초연구본부	21.0	22.0	22.0	24.0	20.0	109.0	-1.2%
비중	70.0%	73.3%	66.7%	63.2%	58.8%	66.1%	
중개연구본부	7.0	5.0	9.0	9.0	11.0	41.0	12.0%
비중	23.3%	16.7%	27.3%	23.7%	32.4%	24.8%	
소장관할&기획	2.0	3.0	2.0	5.0	3.0	15.0	10.7%
비중	6.7%	10.0%	6.1%	13.2%	8.8%	9.1%	
합 계	30.0	30.0	33.0	38.0	34.0	165.0	3.2%
비중	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	

다. 펀딩 유형별 연구과제 현황

- 최근 5년 합계 기준 펀딩 유형별 IPK 연구과제 추진 현황을 보면, 전체 연구비 중 블록 외 연구비가 377.9억원(52.7%) 수준, 블록 펀딩이 339.4억(47.3%)으로 블록 외 비중이 소폭 높게 조사
 - (유형별 비중) '22년 기준, 블록 펀딩 비중이 68.7%(146.5억원)로 과기부 블록 31.3%(66.6억원) 대비 높게 조사
 - 연도별로는 '18년에는 과기부+경기도 블록이 전체 60.7%(70.5억원)으로 블록 외 39.3(45.6억원) 대비 높은 비중 차지
 - 이후, 블록 펀딩 규모는 일정 부문 유지되는 반면 '21년 이후 블록 외 과제비가 대폭 증가하며, 규모와 비중이 역전
 - 최근 5년 간 총 규모 면에서는 블록 외 펀딩이 소폭 비중이 높게 조사
 - (블록 펀딩 추이) 블록 펀딩 과제비는 '18년 기준 70.5억원으로 IPK 내 많은 비중 (60.7%)을 차지, 이후 금액 면에서 연평균 -1.4% 수준으로 소폭 감소
 - 과기부 블록은 '18년 55.5억원에서 '20년부터 66.6억원 유지
 - 경기도 블록은 '18년 15.0억원. '19년 8.0억원을 끝으로 지원 종료
 - 전반적으로 블록 퍼딩 규모는 큰 등락 없이 일정 수준을 유지 중

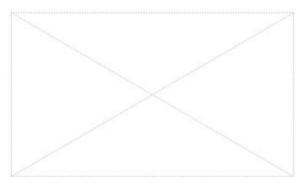
참고 IPK 블록펀딩 주요 내용 과기부 블록 펀딩 경기도 블록 펀딩

 IPK는 초기 '04년 ~ '13년 간 설립 협정을 통해 現 과기정통부로부터 매년 약 120억원의 지원을 받음
 → 협정기간 이후 절반 수준인 66.6억원 수준으로 매년 펀딩 유지 중이나 지속 확보를 위한 당위성 제 시가 필요한 상황

[과기부 지원 금액]

구분	'04~'14	'15	'16	'17	'18	'19	'20	'21	합계
R&D	1278.7	75	50	50	55.5	61.1	66.6	66.6	1703.5
건설	200	_	-	-	-	-	-	-	200

 '05년 경기도 이전 협정을 통해 '06년 ~ '15년 간 경기도로부터 매년 약 30억원을 지원 → 이후 일 부 금액 추가 지원 후 '19년을 끝으로 종료


[경기도 지원 금액]

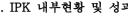
	구분	'04~'14	'15	'16	'17	'18	'19	'20	'21	합계
]	R&D	270	30	7	15	15	8	-	-	345
	건설	200	-	-	1	-	-	-	-	200

- (블록 외 펀딩 추이) 블록 외 펀딩 과제비는 '18년 기준 45.6억원(39.3%)에서 '19년 소폭 감소 후 연평균 33.9% 수준으로 크게 증가하여, '22년 기준 146.5억원(68.7%) 규모
 - 블록 외 펀딩은 '21년부터 폭발적으로 크게 증가하였는데, 이는 바이오 core facility 사업 및 바이러스 연구지원센터와 같은 큰 규모의 사업 예산에 따른 것으로 분석

<블록 펀딩 및 블록 외 펀딩 금액 추이>

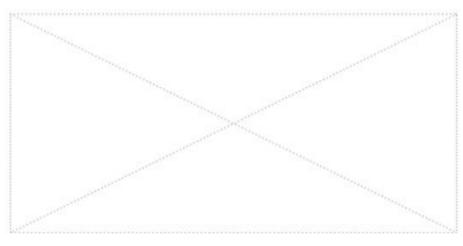
<블록 펀딩 및 블록 외 펀딩 비중>

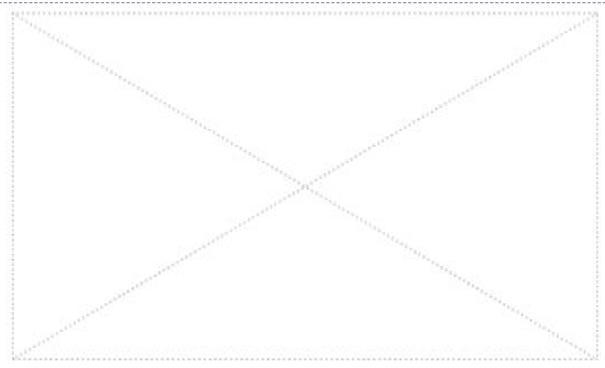
| 그림 Ⅲ-18 | 최근 5년 ('18~'22) IPK 펀딩 유형별 연구과제비 및 비중 추이


참고

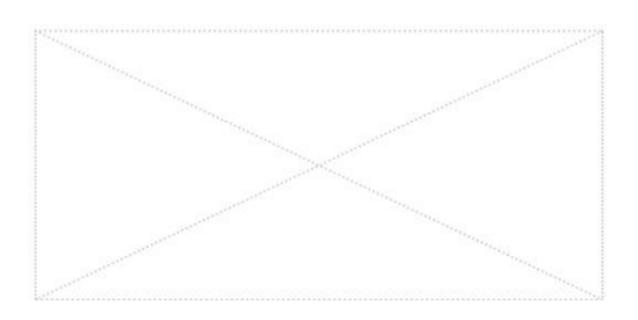
대규모 사업비를 별도로 분석한 IPK 예산 추이

- '21년, '22년 바이러스 연구지원센터 지원 사업에 따른 블록 외 연구과제비 증가
- '19년을 마지막으로 경기도 블록 퍼딩 종료
- 대규모 사업비를 제외한 블록 펀딩 외 연구과제비는 과기부 블록 펀딩 대비 적은 비중


주요 영향 값


구분	2018	2019	2020	2021	2022	합계
과기부 블록펀딩	55.5	61.1	66.6	66.6	66.6	316.4
경기도 블록펀딩	15.0	8.0(종료)	_	_	_	23.0
블록펀딩 외 (대규모 사업비 제외)	30.6	19.2	43.7	48.7	44.0	186.2
바이오Core Facility 구축사업	15.0	15.0	15.0	10.0	5.0	60.0
바이러스 연구지원센터 지원	0	0	0	34.2	97.6	131.8
합계	116.1	103.3	125.3	159.5	213.2	717.4

수탁형 과제 (블록, 대규모 인프라성 제외) 예산 특성 분석

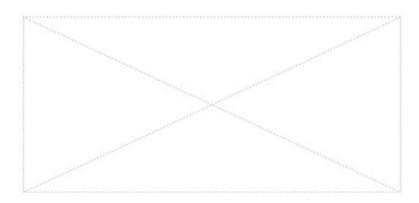


자료 : IPK 내부자료

☞ (시사점) 수주 예산 구조상 단기 대규모(블록펀딩, 인프라성) 예산 비중이 높고, 상대적으로 개별 수주형 과제 비중이 낮음 → 대규모 사업 종료 시점에 큰 예산 감소폭 우려, 안정적 운영을 위한 예산 다각화 전략 필요

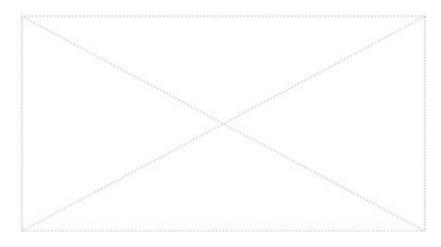
라. IPK 파이프라인 구축 현황

- IPK보유 파이프라인은 전체 62개 수준인 것으로 파악 (의약화학팀 파이프라인 20개 포함) 첨단바이오의학연구팀 9개 등 개발유형에 따라 6개 유형*으로 구분
 - * 파이프라인 유형은 ㈜울림에서 자체 분류
 - IPK는 현재 다양한 파이프라인을 보유 중이며,사장된 파이프라인의 개발 가능 여부 현재 연구단계의 지속성 확보 등 IPK의 강점으로 극대화 전략 필요


|그림 Ⅲ-19 | IPK 유형별 대표적 파이프라인 현황

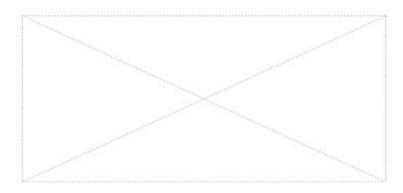
☞ (시사점) 기관 차원의 지속적인 파이프라인 관리 및 모니터링 체계 필요
 → 기술사업화 관점의 연구 포트폴리오, 국가 감염병 위기 대응 및 공중보건형 연구 포트폴리오 등 유형별 전략적인 연구 파이프라인 관리체계 필요

3.2. IPK 주요 성과 분석8)

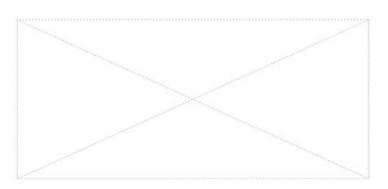

가. 논문 성과

- 최근 5년간 IPK 논문성과는 총 148건으로, '18년 19건 이후 '21년 51건 까지 지속 상승했으며 '22년은 7월 집계 기준 30건 확보
 - (본부별) 기초연구본부가 115건(77.7%)으로 가장 많으며, 그 다음으로 중개연구본부 43건(29.1%), 연구소장 9건, CSO 4건 순

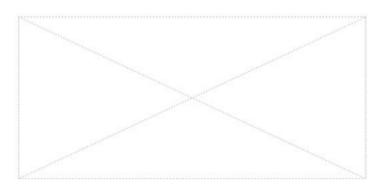
|그림 Ⅲ-20 | 최근 5년 ('18~'22) IPK 본부별 논문 창출 성과


• (SCI 논문) 전체논문 중 SCI논문은 143건으로 '18년 19건에서 지속 증가하여 '21년 49건으로 가장 많은 수를 기록, IPK 논문성과 중 평균 96.6%이상이 SCI 논문인 것으로 조사돼 논문의 질적 수준은 높게 평가

| 그림 Ⅲ-21 | 최근 5년 ('18~'22) IPK SCI 및 비SCI 논문 창출 성과

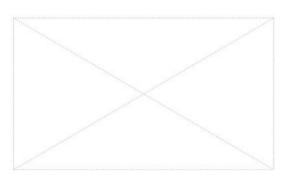

⁸⁾ 공동연구를 통해 창출된 논문, 특허 성과는 각 본부의 성과로 집계하였음. 예를 들어 기초연구본부와 중개연구본부가 공동으로 집필한 논문, 특허는 기초연구본부 1편(건), 중개연구본부 1편(건)으로 성과 창출한 것으로 집계, 2022년 값은 7월까지 집계 된 값으로 해석 시 유의 필요

● (1인당 논문 건수) 최근 5년 IPK의 1인당 논문성과는 '18년 0.23건/인에서 '21년 기준 0.53건/인까지 매년 증가 추세

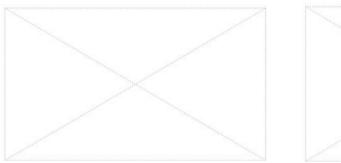

| 그림 Ⅲ-22 | 최근 5년 ('18~'22) IPK 1인당 논문 창출 성과

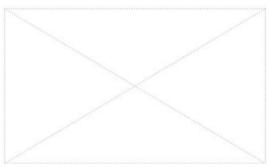
● (1억원당 논문 건수) 최근 5년 IPK의 과제비 1억원당 논문성과는 '18년 0.16건/ 억원에서 '21년 기준 0.32건/억원까지 매년 증가한 것으로 조사

| 그림 Ⅲ-23 | 최근 5년 ('18~'22) IPK 과제비 1억원당 논문 창출 성과

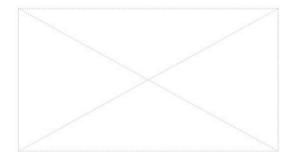

● (과제당 논문 건수) 최근 5년 IPK의 과제당 논문성과는 '18년 0.63건/과제에서 '21년 기준 1.34건/과제까지 과제당 논문성과의 증가 추이를 나타냄

|그림 Ⅲ-24 | 최근 5년 ('18~'22) IPK 과제당 논문 창출 성과

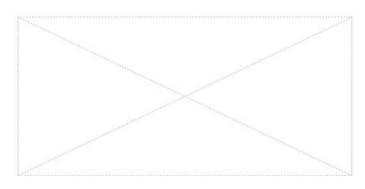

나. 특허 성과

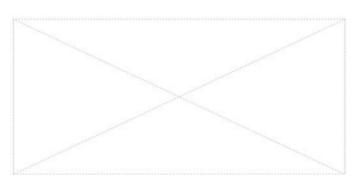

■ 최근 5년간 IPK 특허성과는 출원 67건, 등록 42건으로 총 109건이며, '18년 15건(출원12, 등록3)에서 '20년 33건(출원20, 등록13)까지 증가하고 '22년은 7월 집계 기준 23건(출원14, 등록9) 확보

|그림 Ⅲ-25 | 최근 5년 ('18~'22) IPK 특허 창출 성과

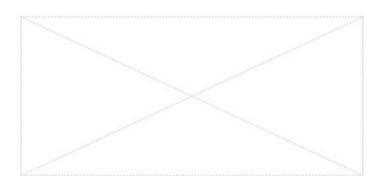

• (국내·외 구분) 전체 특허 성과 중 국내 특허는 48건(출원36, 등록12)이며, 해외 특허는 61건(출원 31, 등록30)

|그림 Ⅲ-26 | 최근 5년 ('18~'22) IPK 국내·외 구분 특허 창출 성과


● (본부별) 기초연구본부가 91건(83.5%, 출원62, 등록29)으로 다수를 차지하며, 중개 연구본부는 47건(43.1%, 출원15, 등록32) 창출

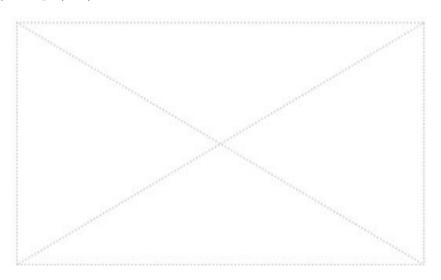

|그림 Ⅲ-27 | 최근 5년 ('18~'22) IPK 본부별 특허 창출 성과

• (1인당 특허 건수) 최근 5년 IPK의 1인당 특허성과는 '18년 0.18건/인에서 '20년 기준 0.40건/인까지 증가 후 '21년에 소폭 감소하였으며, 기초연구본부의 인당 성과가 중개연구본부 대비 상대적으로 높게 조사


| 그림 Ⅲ-28 | 최근 5년 ('18~'22) IPK 1인당 특허 창출 성과

• (1억원당 특허 건수) 최근 5년 IPK의 과제비 1억원당 특허성과는 '18년 0.13건/억원에서 '20년 기준 0.26건/억원까지 증가하였으나, '21년 0.14건/억원 수준으로 감소, 본부별로는 '18년 제외 대부분 중개연구가 상대적으로 높게 조사

|그림 Ⅲ-29 | 최근 5년 ('18~'22) IPK 과제비 1억원당 특허 창출 성과


• (과제당 특허 건수) 최근 5년 IPK의 과제당 특허성과는 '18년 0.50건/과제에서 '20년 기준 1.00건/과제까지 증가 후 '21년에 0.58건으로 감소, 본부별로는 중개연구본부가 기초연구본부 대비 상대적으로 높게 조사

|그림 Ⅲ-30 | 최근 5년 ('18~'22) IPK 과제당 특허 창출 성과

다. 기술이전·사업화 성과

□ '18~'22년까지 IPK 기술이전 성과는 총 9건, 313.6억 원을 확보했으며, '20년 SARS Compound 220억원 기술이전, '22년 간섬유증 치료물질 15억원 등 기술이전 성과 확보

|그림 Ⅲ-31 | 최근 5년 ('18~'22) IPK 기술이전·사업화 성과

|표 Ⅲ-8 | 최근 5년 ('18~'22) IPK 기술이전·사업화 성과

(단위: 억원)

연도	계약명	기술실시기관	기술료
2018	SFTSV Antibody 기술이전(전용)	앱콘텍(Abcontek)	0.05
2010	화합물 기술이전(Cancer Compound)	J2H Biotech	19.2
2019	화합물 기술이전(MRSA Antibacterial Compound)	J2H Biotech	19.2
	Cancer Assay 노하우 이전	J2H Biotech	0.1
2020	기술실시계약(SARS Compound)	레고켐바이오사이언스	220.0
	기술이전(전용)(MERS Antibody)	앱콘텍(Abcontek)	19.0
2021	화합물 기술이전(MRSA Antibacterial Compound)	J2H Biotech	20.0
2022	화합물 기술이전(Fibrosis Compound)	키바이오(Keybio)	15.0
	바이오마커 기술 이전(간암예후진단)	메디키나바이오	1.0

라. 기술서비스 성과

■ 최근 5년간 IPK는 기술서비스를 총 531건 수행하였으며, 총 기술서비스 수입은 97.8억 원 수준인 것으로 나타남

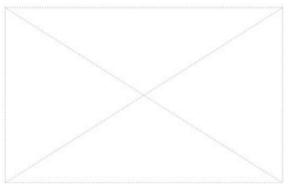
|그림 Ⅲ-32 | 최근 5년 ('18~'22) IPK 기술서비스 지원 성과

• (본부별 서비스 지원 성과⁹⁾) IPK 기관차원의 20건(장비사용료)을 제외하고 본부별로 비교하면, 기초연구본부는 366건, 중개연구본부는 240건을 수행

| 그림 Ⅲ-33 | 최근 5년 ('18~'22) IPK 기술서비스 지원 본부별 성과

| 표 Ⅲ-9 | 최근 5년('18~'22) IPK 기술서비스 지원 성과

(단위 : 건, 억원)


구분	구분		2019	2020	2021	2022	합계
IPK기관차원	기술지원	5	1	1	4	9	20
(장비사용료)	기술지원료	0.01	0.003	0.0001	0.04	0.2	0.2
-1 - 4 - 1 1	기술지원	23	22	135	100	86	366
기초연구본부	기술지원료	6.4	6.2	14.6	10.5	8.0	45.7
즈케어그ㅂㅂ	기술지원	44	45	51	41	59	240
중개연구본부	기술지원료	20.4	16.7	10.3	14.9	11.4	73.7

⁹⁾ 공동참여를 통해 지원한 성과는 기초연구본부 1건), 중개연구본부 1건으로 성과 창출한 것으로 중복 집계함에 따라 본부별 합산과 IPK 기관 전체 지원 건수는 차이가 있을 수 있으며, 2022년 값은 7월까지 집계된 값으로 해석 시 유의 필요

마. 인력 양성 성과

> 인턴십 프로그램

- IPK는 최근 5년('18년~'22년) 간 인턴십 프로그램을 통해 총 43명의 수료자 배출
 - 국내 수료자는 총 17명이며, 국외 수료자는 총 26명으로 국제 연구기관으로서 해외 인력의 인턴십을 통한 인력교류가 활발히 운영되는 것으로 조사

| 그림 Ⅲ-34 | 최근 5년 ('18~'22) IPK 본부별 특허 창출 성과

> UST 운영

- 🔲 IPK는 UST 학위과정 운영을 통해 총 2명 졸업, 1명 수료자 배출
 - 학위별로는 박사과정 1명 졸업, 1명 수료자를 배출하였으며, 석사과정 1명 졸업 배출
 - 이 중 졸업 1명은 베트남, 1명 한국이며, 수료자 1명은 프랑스 국적으로 조사되어 다국적 인력에 대한 UST 프로그램 운영 중인 것으로 확인

|표 Ⅲ-10 | IPK UST 학위과정 운영 성과

	학위과정	국적	전공	세부전공	졸업구분
1	박사과정	베트남	바이오-메티컬 융합	생물화학	졸업
2	박사과정	프랑스	바이오-메티컬 융합	생물화학	수료
3	석사과정	대한민국	바이오-메티컬 융합	생물화학	졸업
4	박사과정	대한민국	바이오-메티컬 융합	생물화학	자퇴

4. IPK 내부의견 수렴

- (의견수렴 개요) IPK 부서 및 각 팀별 팀장 인터뷰를 통해 IPK 내부 구체적 현황 파악 및 발전 방향 수립에 대한 내부의 직접적인 의견 수렴 진행
 - (팀별 인터뷰) 한국파스퇴르연구소(IPK) 내 각 팀별 팀장 또는 부재 시 팀장 대행급 인력 인터뷰를 통해 향후 IPK 발전을 위해 개선이 요구되는 실무 현장의 의견 수렴 추진
 - '22년 7월~8월(대면1차), '22년 10월~11월(서면), '23년 1월(대면 2차)
- (의견수렴 결과) IPK 중장기적 발전을 위해 내부 팀별 제시된 의견을 관점별로 종합 정리하면 다음과 같음

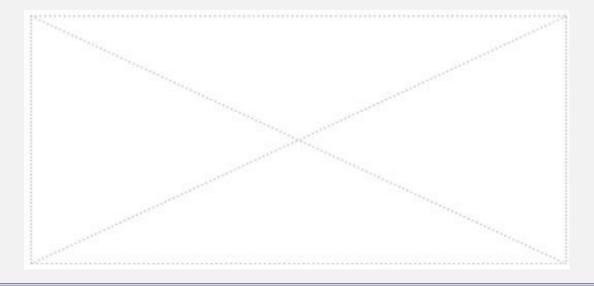
|표 Ⅲ-11 | IPK 중장기 발전방향 수립을 위한 내부의견 수렴 결과

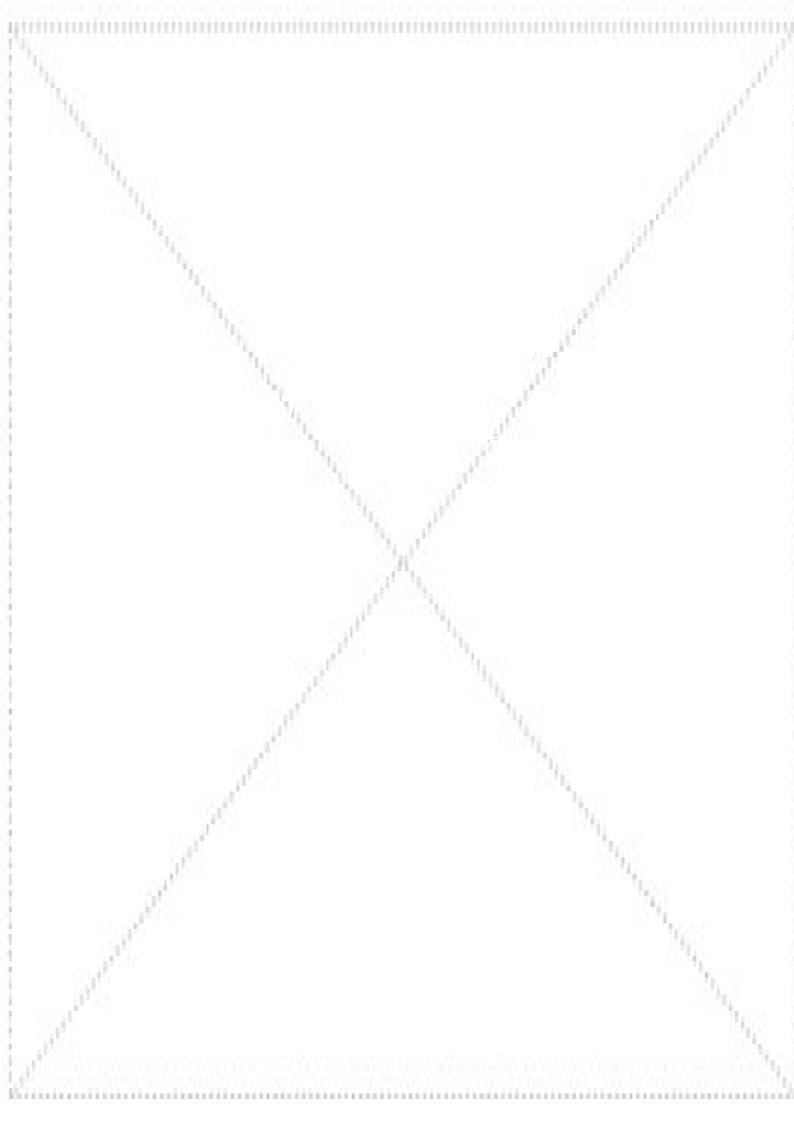
관점	발전 방향 의견		
예산 운영	✓ 현재 과기부 블록펀딩과 같은 지속적이고, 연속적인 예산 확보 필요✓ 공동 연구 컨소시엄을 통한 국내·외 연구과제 참여 강화 필요✓ 과기부 외 타 부처 연구과제 수주 확대 필요		
인력 운영	 ✓ 박사과정 또는 석박사 통합 대학원생 확보 ✓ 새로운 팀장 확보를 통한 팀 및 조직 성장 추진 ✓ 박사급 인력 충원 ✓ 바이오인포매틱스 전문인력 확보 ✓ UST 활용을 통한 학생 연구원 영입 필요 		
IPK 연구분야	 ✓ 기초연구에 대한 중요성 인식 및 연구 강화 필요 ✓ 어세이 개발 역량의 지속 고도화 필요 ✓ 감염병 치료제 외 백신, 항암제, 염증 질환 치료제 등으로 분야 확대 추진 ✓ 감염병 외 면역질환, 섬유화 등 감염병 관련 질환으로의 연구분야 확대 ✓ ADME/PK, 독성평가 등의 기초 전임상 실험 연구 추진 ✓ HTS 기술 첨단화 및 고도화 지속 		
IPK 내부 기능	 ✓ AI, 바이오인포매틱스 전문 기능 확보(인력, 조직) 필요 ✓ 비임상 동물실험 강화 필요 ✓ 기술이전·사업화 촉진을 위한 전문 조직 필요 ✓ 신규 전략 및 기획을 위한 TF 기능 운영 ✓ 생물학적 재료 수출입을 위한 핵심 지원 기능 필요 ✓ 현지 보조금 신청을 위한 외국인 지원 		
기타 추가의견	✔ 기존 실험장비 유지보수, 신규 장비 추가 및 고도화 필요		


내부현황 분석 종합

- > 감염병 치료제 중개연구 기관으로서의 역량 뿐아니라 질환별 누적되어온 연구경험에 기반한 Assay 개발, 병원체 기전, 숙주 반응 등의 우수 연구역량 보유
 - → 지난 20년여 간 국가의 지원으로 축적된 역량을 통한 실질적으로 국가에 기여 가능한 성과 극대화를 통한 IPK의 가치 제고 필요
- 가염병 특화 시설에 대한 오랜 운영 기간과 이를 활용한 우수한 연구및 실험역량을 보유
 - → 감염병 특화 시설 기반의 전문인력 양성, 외부 지원 프로그램 운영 등 IPK에 내재된 경험과 노하우의 확산을 위한 전략적 기획 필요
- > 조직 구조와 규칙상으로 기관 리더가 임기제로 운영됨에 따라 IPK의 중장기적 발전을 리딩할 수 있는 리더십 부재
 - → 중간 부서장급 조직 구성을 통해 장기적인 리더십 발판 마련 필요
- ▶ 연구부서 인력 증가 대비 행정·경영 인력의 증가 비중이 높게 조사 → 행정·경영 인력의 전문화(BD 역할 등 사업화 관련 역량 강화)를 통해 IPK의 중장기적 조직 발전을 위한 기반을 마련함과 동시에 추가적인 연구인력 확보 노력 지속 필요
- ▶ 박사급 인력 비중의 상대적 감소로 전체 인력 규모 대비 외부 과제 수주를 확대함에 한계 발생 가능
 - → 효율적 인적자원 활용과 추가적인 예산 확보 전략을 통해 향후 우수 인력을 유치할 수 있는 자금력과 IPK 대외 이미지 제고 필요

- ▶ 예산 구조상 단기 대규모(블록펀딩, 인프라성) 예산 비중이 높아 대규모 사업 예산 종료 시점에 큰 예산 감소폭 우려 → 안정적 운영을 위한 예산 다각화 전략 필요
- > 기관 차원의 지속적인 파이프라인 관리 및 모니터링 체계 필요 → 기술 사업화 관점의 연구 포트폴리오, 국가 감염병 위기 대응 및 공중보건형 연구 포트폴리오 등 유형별 연구 파이프라인 전략적 관리 필요
- ➤ 논문성과는 증가 추세이며, 특히 코로나19로 인해 최근 급격히 증가된 것으로 파악됨, 대부분 IPK 논문성과는 SCI 논문 비중이 높아 질적 수준 이 긍정적으로 평가 → 다만, 단순 양적인 성과관리 외 더 심층적인 질적 수준을 평가할 수 있는 성과 관리체계가 필요한 것으로 판단됨
- ► 특허성과는 '21년에 성과가 소폭 감소된 것으로 파악되나 '22년 중반까지 예년 수준까지 창출된 것으로 보아 장기적인 증가 추세는 유지될 것으로 전망 → 특허 성과 또한 양적 수준을 넘어 SMART 평가 등 질적 지표를 통한 기관 성과 관리 체계 확립이 필요할 것으로 판단됨
- ▶ 기술이전 성과는 매년 1~2건 발생 중, 기초-중개 기반의 최종적인 성과 로서 기술이전 성과 극대화를 위한 중장기적 역량 강화 필요
- ▶ 기술서비스 코로나19 기간 초기 기술서비스 성과가 폭발적으로 증가
 → 서비스 내용 대다수가 스크리닝, 물질 검증 중심으로 대외적으로
 인정 받고 있는 서비스라는 것을 반영, IPK의 예산 전략 다각화 중하나로 서비스 지원 기반의 수입을 활용 가능할 것으로 기대


[IPK 기관 주요 강점]


▶ 선도적인 초고속·대용량 스크리닝 플랫폼 보유, 이미지 기반의 심층적인 분석결과를 도출, 누적된 라이브러리를 활용한 신속한 결과 도출, 또한 감염병 특화 시설((A)BL-3 등) 국내 최초 운영 등 인프라 강점 보유

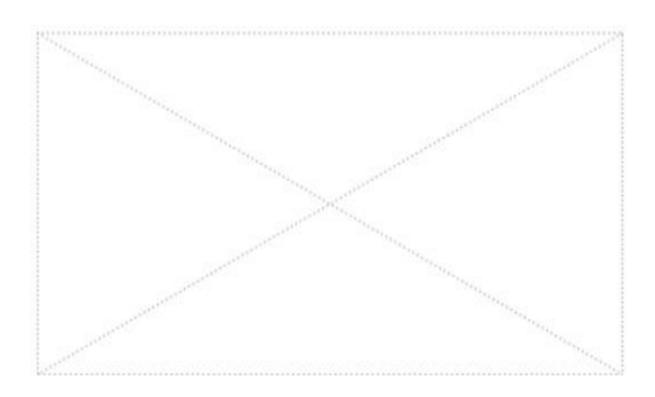
[IPK 기관 주요 한계점]

▶ 불안정한 예산 구조, 코로나19 사태 이후 감염병 외 영역으로의 서비스 확대를 통한 수요 창출 필요, 중장기적 기관 발전의 Driving 리더십 확보 필요, 박사급 인력 등 우수 연구인력 유출 방지 및 신규 확보 필요

1. 이슈 종합

1.1. 감염병 위기 대응 관점

- 글로벌 감염병 위기 속에서 증가된 감염병 대응 요구와 감염병 연구기관 으로서 IPK의 독자적인 역할 확보 관건
 - 향후 국내 감염병 치료제 개발의 중심적 기관으로 변모를 통해 국가 위기 대응 체계 내 임무를 강화할 필요
 - 정부지원을 받는 글로벌(비영리)연구소로서 향후 국가적 감염병 대응 관점에서 수요에 부합하기 위한 중장기적 목표 설정 필요
 - 미래 감염병 위기 대응을 위한 IPK가 20년간 누적해온 역량을 고도화하고, 국내 미해결/급·만성 감염병 치료제 개발의 중점 역할 확보 필요
 - 팬데믹을 계기로 감염병 대응 관점의 투자가 확대되고 국가적 차원에서 더 많은 감염병 R&D 사업이 준비되고 있는 상황
 - 이에 IPK는 가까운 미래에 신규 및 후속 감염병 R&D 사업 추진을 고려, 강조된 투자 분야에 대한 목표 설정과 집중된 연구 필요


1.2. IPK 역량 가치 제고 관점

- IPK가 보유한 국내 최고 수준의 신약 스크리닝 역량 기반의 중개연구 기능 고도화를 통한 독보적 강점 유지 전략 필요
 - IPK는 HTS 기반의 국내 최고의 신약개발 플랫폼을 보유하고 있으며, 앞으로 기초연구와 신약스크리닝 기술 결합으로 시너지를 창출할 수 있는 방안 필요
 - 추가적으로, HTS기술 고도화, AI기술 및 감염병 특화 빅데이터 기반을 확보하면, 신약개발의 속도 향상과 생산성 향상이 가능할 것으로 판단됨
 - ※ (HTS기반 신약개발 생산성 향상) Chemical substances 제형, 물리화학적 특성화 ADMET (흡수, 분포, 대사, 배설, 독성) 등 평가 생산성 향상 및 자동화
 - ※ (AI기술 접목 이미지 기반 활용) 'Cell Paninting' 기술 접목을 통한 고감도 스크리닝
 - ※ (감염병 특화 데이터) 화학정보학 기반 분자 모델링 및 가상 스크리닝

- ※ (약물재창출 연구결과 축적) 기존 약물의 범용적 활용, 새로운 Indication 확장 가능성 확인 및 기존 스크리닝 데이터 활용 다중오믹스 분석시스템 활용 등
- 또한 IPK는 중개연구에 필수적인 비임상 단계 지원 역량을 강화하여, 비임상 평가기술 고도화 및 강점기반 활용을 통해 미래 수요 창출 필요
 - 향후 다양한 동물모델 개발을 통한 지원기반 확대, 영상기반 해석 및 결과 환류 연구 강화 등 비임상 역량 고도화 필요
 - ※ 수요기반 감염모델 확충, 동물자원(소동물에서 중동물까지 확대) 인프라 확충
 - ※ 국가전임상시험지원센터 협력체계 내 특화 영역(기초유효성 평가 PART) 선도를 위한 기반 역량 및 기술 고도화 추진
- 파스퇴르가 보유한 국제 네트워크 이점을 활용하여 글로벌 기관으로서 실질적 파급효과 창출 필요
 - 감염병 환자 검체 수집의 한계 등 국내 부족한 자원, 정보를 극복하기 위해 글로벌 협력 기반 자원·정보 공유 기능 강화 필요
 - 국내 연구진들의 글로벌 연구를 위한 교두보 역할을 수행하거나, 개별 연구자가 홀로 수행할 수 없는 글로벌 수요 공동 대응 기대
 - 국내 비발생 또는 해외 신종 감염병에 대한 현지 협력 연구 추진 등을 통한 IPK 국제 네트워크의 실질적인 활용 극대화 필요

1.3. 조직 기능 확대 관점

- 보유 역량 가치 확장을 위한 서비스 플랫폼 확보, 기술이전 전담조직 등연계 서비스 역량 확보를 통한 추가적인 예산 확보 전략 필요
 - 공공 영역을 상업적 부가가치로 전환할 수 있는 전문 BD + 기술사업화 전문 기능 조직 확충으로 LAB-TO-MARKET 활성화
 - 독자적 대용량 스크리닝 기술과 감염병 특화 시설을 활용한 서비스 수행 또는 주문형 (협력·공동) 연구를 통해 발생하는 상업적 기대 효과 창출
 - 감염병 영역 뿐만 아니라 다양한 질환 영역으로의 서비스 범위 확대를 통한 신약개발 전반의 수요를 활용한 예산 확보 기회 확장 필요

|그림 IV-1 | IPK 보유 강점 및 대외적 필요연구기능

2. SWOT 분석 및 전략 방향

2.1. SWOT 분석

| 표 IV-1 | 한국파스퇴르연구소(IPK) S.W.O.T. Matrix 분석

- 초고속·대용량 스크리닝 기반 감염병 분야의 우수 | 예산구조 불안정성, 비영리기관(국제연구기관) 중개연구 역량 보유
- 감염병 특화 인프라 및 운영 노하우 확보
- 파스퇴르 글로벌 네트워크 보유
- 병원체 라이브러리 등 다양한 파이프라인 보유
- 우수 후보물질 개발 및 기술이전 경험

- AI. 바이오인포메틱스. 동물실험 관리 및 연구 전문인력 부재·부족
- 저분자 화합물 기반 중심
- 신·변종 바이러스, 세균, 진균 다양한 병원체에 대 한 연구 스펙트럼 상대적 부족

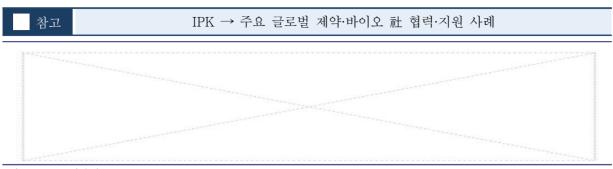
S W 1// 0

- 코로나19 팬데믹 이후 넥스트 펜데믹 대비 분위기 속 감염병 대응 연구 수요 증대
- 감염병 비임상 연구를 위한 (A)BL-3 등 동물실험 인프라 수요 상승
- 국제적으로 협력형 구조의 감염병 대응전략 강조 (IPK는 글로벌 네트워크 보유 중)
- 신약개발 R&D에 대한 관심도 증가 및 시장 환경 활발 (신규 수요 ↑)
- 글로벌 선도 제약기업의 거대화 및 융복합 기술 흡수 다각화
- 바이러스기초硏, 생공硏, 국립감염병연구소 등 감염병 생태계 내 중복기능 발생
- 우수인력 영입경쟁 심화

SO-1.	초고속·대용량 스크리닝 기반 중개연구 역량 및 감염병 특화 인프라 활용을 통해 대외 연구 수요 대응 강화 → 공동·협력 연구 및 서비스 지원
SO-2.	IPK 보유 글로벌 네트워크 우수 정보·자원의 국내 확산 및 국제적 협력의 실질적 교두보역할 확보
SO-3.	IPK 보유 중개연구 역량을 활용한 신약개발 R&D 전반에 걸친 우수 후보물질 발굴 및 기술이전·사업화 지원 등의 서비스 영역 강화
WO-1.	IPK만이 수행할 수 있는 독보적인 신규 서비스 발굴(중개연구 지원 고도화 등)을 통한 신규 예산 확보 기회 마련
WO-2.	개방·협력 연구를 통한 점진적 IPK 기관 내 R&D 스펙트럼 확장
ST-1.	초고속·대용량 스크리닝 플랫폼 지속 고도화를 통한 선두 지위 유지
ST-2.	IPK 만의 글로벌 네트워크 가치 제고(활용성 ↑) 및 국제 연구역량 극대화
WT-1.	빅데이터, AI 기술 활용을 위한 바이오인포매틱스 전문인력 및 인프라 확보
WT-2.	시장가치 지향적인 연구개발 포트폴리오 운영을 위한 BD 전문인력 확보
	SO-2. SO-3. WO-1. WO-2. ST-1. ST-2.

2.2. 중장기 중점 방향 설계

- IPK 강점을 극대화하는 방향으로 설계
 - 그간 IPK가 중점적으로 다뤄온 감염병 질환별 기초연구 및 중개연구 강점 역량을 극대화 할 수 있는 중장기 전략 방향 설계

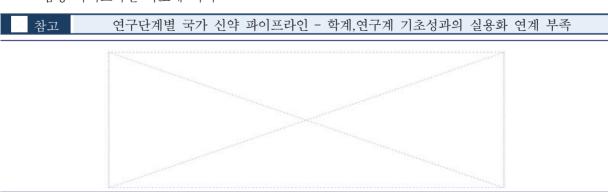

> IPK 핵심 강점

- [기초연구] 질환별 기초·기전 분석 역량, 타겟 발굴 및 스크리닝을 위한 Assay 개발 역량. 누적된 질환별 타켓 정보 및 약물 효능 데이터
- [중개연구] 초고속·대용량(+단시간, 고감도 분석) 스크리닝 분석 기술, (A)BL-3 시설 기반의 스크리닝 및 동물실험 역량, 약 51만종* 이상의 화합물 라이브러리 보유
 - * 저분자 화합물 25만종, FDA 승인 라이브러리 7,500종, 천연물질 15만종 등
- [인프라] 감염병 특화 시설 보유 및 장기간의 운영 노하우, 생물자원은행을 통한 병원체·인체자원의 확보·공유 가능, 파스퇴르 네트워크(PN)의 정보·자원 활용 가능

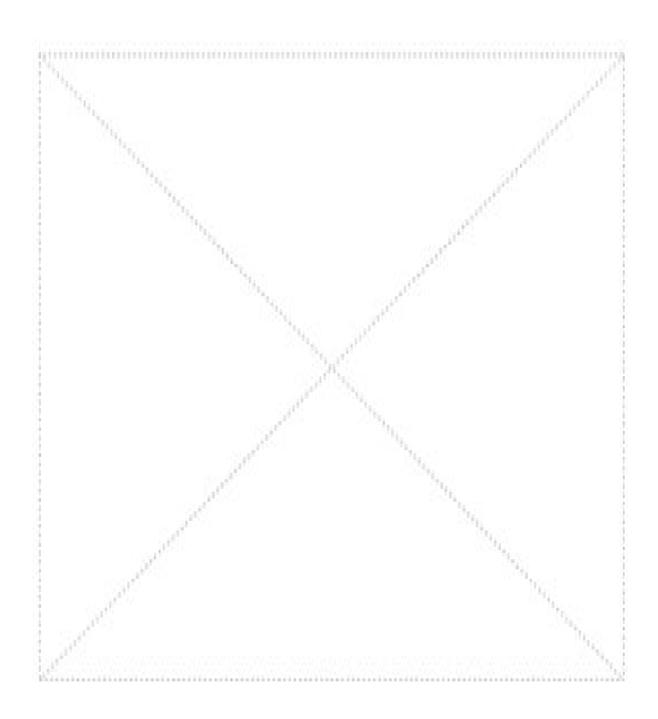
참고 참고

대외적으로 인정받은 IPK의 강점 - 코로나19 대응 사례

- [축적된 감염병 연구 경험 및 데이터] BL3 실험실에서 가동되는 "약효탐색 스크리닝 플랫폼 기술"과 기존 사스·메르스 연구 등을 통해 축적된 감염병 연구 역량 활용
 - → 코로나19 바이러스의 대용량 약물 효능을 스크리닝 한 **세계 최초의 연구 결과** 도출
- [PN 자원 활용] 코로나19 바이러스 확보 전, 항바이러스 효과가 유사할 것으로 예상되는 사스바이러스(SARS-CoV-1)를 활용해 예비연구 수행
 - → PN 멤버인 **홍콩대-파스퇴르연구소와의 연구협력**을 통해 사스바이러스를 2018년에 분양받아 확보
- [지<mark>속 고도화한 스크리닝 역량 활용</mark>] 코로나19바이러스 분양 후 <u>4주 내 약효평가 스크리닝</u>을 통해 후보약물 20여 종을 도출, <u>5주 내 연구 결과 공개</u>
 - → 초고속·대용량 스크리닝 역량 기반의 후보약물 신속 발굴
- [IPK 국제 네트워트 자원을 활용한 임상 연계] 인간 폐세포를 활용한 스크리닝 연구를 통해 나파모 스타트 등 <u>우수 후보약물 4종을 최종 발굴</u>하여 국내외 임상 추진
 - → **글로벌 네트워크와 국내 제약사 간 협력 체계 구축**을 통해 국내외 임상개발('나파모스타트'와 '카모스타트')로 연계
- ※ IPK. 코로나19 치료제 개발 연구 허브 역할 수행
- ('20.4.9) 문재인 대통령은 IPK에서 '코로나19 치료제·백신 개발 산·학·연·병 합동 회의' 주재하고 코로나19 치료제 개발을 위한 한국파스퇴르연구소의 선도적 연구 활동을 격려함
- ('20.2.28) **최기영 前과학기술정보통신부 장관**은 **IPK에서 개최된 '코로나19 약물재창출 연구현장 간담 회'** 에 참석해 유수 기관과 연구 전략을 논의함
- ('21.1.14) 용홍택 과학기술정보통신부 제1차관은 IPK를 방문하여 감염병 위기 대응의 선제적 준비 필요성을 강조하고, IPK의 연구 인프라 및 네트워크를 활용한 연구활동을 격려함


자료 : IPK 내부자료

■ 국가 당면 과제 해결과 부합된 방향 설계


● IPK의 향후 역할은 작게는 감염병 대응 분야에서 넓게는 국가 신약 개발 생태계 내 당면과제 해결에 기여하도록 설계

> 국가 감염병 위기 대응 및 R&D 생태계 당면 과제

- [신속 대응 프로토콜 필요] 세계적으로 차기 감염병 위기 발생 시 100일 내 백신·치료제 확보를 위한 신속 대응 프로토콜 구축을 위한 사전 준비 강화, 국내도 이를 위한 국가적 역량 결집을 통한 체계 확보 추진
 - ※ 신속 대응을 위한 바이러스 상위 계열(과 단위)별 사전 연구를 통한 Warm-base를 비축, 신·변종 바이러스에 대한 연구자원·데이터 확보를 통해 위기 시 즉각적 연구개발 추진이 가능하도록 준비
- [협력 기반 우수 후보물질 발굴 및 신약 파이프라인 확대 필요] 학연 기초연구 성과(Lab level 우수성과)를 기반으로 신속한 중개연구 추진 → 우수 기초연구성과의 사장을 방지하고, 산업계로의 기술이전을 촉진 + 동시에 국내 기업 보유 파이프라인의 가치증진을 위한 협력 추진 필요
 - ※ 단순 분석 서비스 등의 협력 구조가 아닌 밀착 공동연구 협력 기반의 기업상업적 가치가 높은 많은 후보물질 최적화 지원 → 이로 인해 많은 우수 후보물질의 시장 진입을 촉진함으로써 국가 임상 파이프라인 확보에 기여

2.3. 중장기 중점 방향

|그림 IV-2 | IPK 중장기 중점 역할 방향

3. 중장기 비전체계도 수립

비전 Vision 질병 메커니즘의 심층 이해와 첨단 플랫폼 고도화를 통한

"국가 신약 개발 및 감염병 신속 대응 핵심 거점 도약"

미션 Missio n

국가 우수 신약 파이프라인 확보 지원과 감염병 위기 대비 선제적 연구성과 비축

핵심 목표 ① 국가 수요 기반 One-Stop 신약 개발 Value-up 플랫폼으로 역할 도약

> 신약개발 Value-up 플랫폼 활용 연구지원(산·학·연 등)을 통한 신약후보물질 3종 이상 도출

② 감염병 위기 대응을 위한 선제적 Warm-base 구축

> 감염병 대비 비임상 완료 치료제 후보물질 3종 이상 비축

------ 1. 신약개발 기초성과 초고속 Value-up 플랫폼화

1-1. 신약개발 원-스탑 Value-up 플랫폼 기반 구축

1-2. 플랫폼 활용 국가 기초연구 성과 고도화 및 수요 지원 활성화

핵심 전략

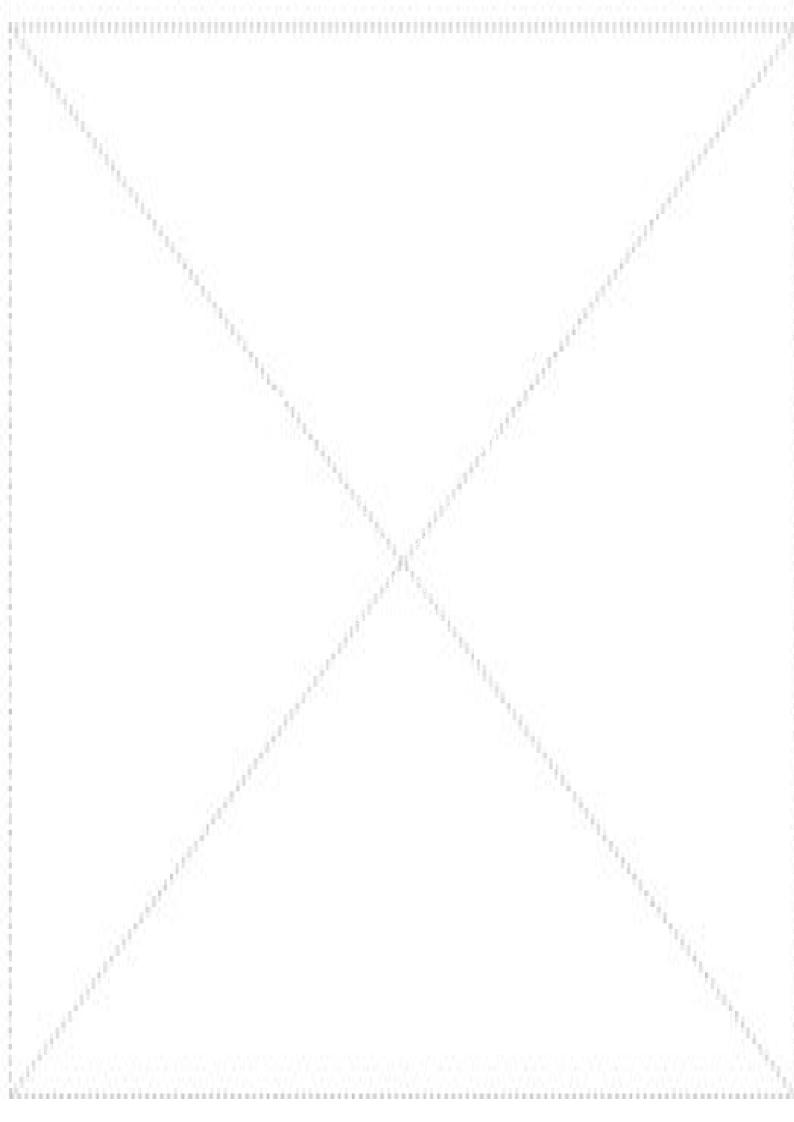
_ ' 및 국가 감염병 위기 대응 Warm-base 핵심 거점화 2-1. 병원체 우선순위 도출 및 IPK신속화 프로토콜 확립

2-2. 위기 대응형 Warm-base 구축 및 미해결 감염병 연구역량 강화

2-3. 감염병 시설 기반 특화 프로그램 및 감염병연구자원은행 구축 운영

추진 과제 ----- 3. 고품질 감염병 빅데이터 생산 및 AI 융합형 분석 기지화

3-1. 빅데이터 및 AI 활용 기반 구축


3-2. AI·빅데이터 활용 신약개발 시스템 확립

----- 4. 우수·전문인력 확대 및 국제 협력 강화 4-1. IPK 우수인력 확보를 위한 인사체계 개선

4-2. IPK 기술이전·사업화 전담조직 강화

4-3. PN 네트워크 기반 정보·자원 채널링 강화

|그림 IV-3 | 비전체계도

1. 신약 개발 기초성과 초고속 Value-up 플랫폼화

■ 추진배경 및 방향

- 신약개발 우수 기초연구 성과의 사장을 방지하고, 국가 임상 파이프라인 확대로 성과를 연계할 수 있는 플랫폼 기반 마련 필요
 - ※ 기초연구성과를 사업화 시키기 위한 다음 단계인 약물탐색에 소요되는 높은 비용과 정보 부족에 따른 후속 연구 연계 저조
 - 단순 분석 지원 서비스가 아닌 공동 연구, 문제해결 지원 등 '함께 이어달리기' 형의 고도화된 서비스로 성공률 제고
 - 또한 사업화를 염두에 둔 맞춤형 컨설팅을 통해 기업에서 원하는 맞춤형 후보물질 발굴 지원으로 기초연구성과가 국내 제약산업계로 연계될 수 있는 징검다리 필요
- (방향) 이에 IPK의 핵심 강점인 첨단 초고소 스크리닝 플랫폼 기술 기반 Value-up 프로세스를 구축하고, 기초연구 성과 연계형 지원과 기업 수요를 신속 하고 고품질로 대응할 수 있는 국가 원-스탑 지원 플랫폼 확보

■ 추진 과제별 세부 내용

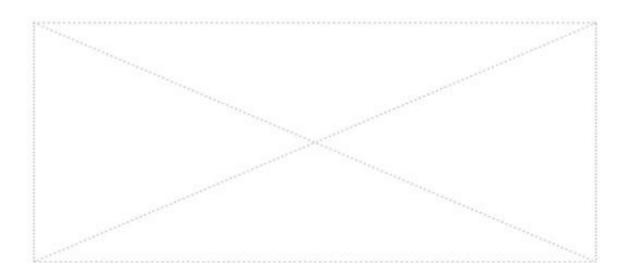
Ⅱ-1 신약 개발 원-스탑 Value-up 플랫폼 기반 구축

① Value-up 플랫폼 개념 설계

- 우수 기초연구성과의 Value-up, 산·학·연 수요 기반의 후보물질 검증 및 최적화 지원 등 우수 후보물질 확보에서 비임상까지 워-스탑으로 지원하기 위한 플랫폼 설계
 - 수요 맞춤형 스크리닝 Assay 개발, 대용량 스크리닝 기반의 약물 탐색에서 비임상 유효성 평가까지 원-스탑으로 지원 가능한 플랫폼

② 스크리닝 및 이미징 기술 고도화

- 우수하 품질의 플랫폼 운영을 위하 스크리닝 관련 기술 및 이미징 기술 고도화
 - -3D 기반 초고속·대용량 이미징 시스템, 초고속·대용량 스크리닝 기반의 ADMET 및 제형 연구법, 생체내 병원체-숙주 반응 영상화 기술, 단일세포수준 감염 숙주 분석 기술 등 플랫폼 기반 기술 확보 및 고도화 추진


③ 의약화학 및 비임상 기반 강화

- 기초-비임상까지의 원-스탑 Value-up 플랫폼에 필요한 의약화학 및 동물 실험 역량 고도화를 위한 기반 강화
 - 줄기세포기반 신약개발 유효성과 독성 평가 연구기반 강화, 실험동물 및 동물 모델 다양화. 동물실험실 품질관리 체계 고도화

11-2 플랫폼 활용 국가 기초연구 성과 및 수요 Value-up 활성화

① 플랫폼 기반 국가 기초연구 성과 고도화 및 기업 지원 활성화

- 구축된 Value-up 플랫폼을 통한 국가 우수 기초연구 성과 Value-up 추진 및 기업 등 외부 수요에 대해 저비용·고품질의 Value-up 서비스 제공
 - (Track 1 우수 기초연구 연계형) 기초·원천 R&D 우수 연구성과의 후속 연계 트랙으로 발굴된 타켓 및 연구결과를 바탕으로 약으로 발전시킬 수 있도록 신속한후보물질 도출 지원
 - -(Track 2 산·학·연 주문형) 산·학·연으로부터 주문 받은 수요 대응형 트랙으로 IPK의 고품질·고효율 스크리닝 기술을 활용하고자 하는 외부 수요 대응

|그림 V-1 | 신약개발 Value-up 플랫폼 주요 내용

■ 주요 성과목표(안)

|표 V-1|[전략1] 주요 성과목표(안)

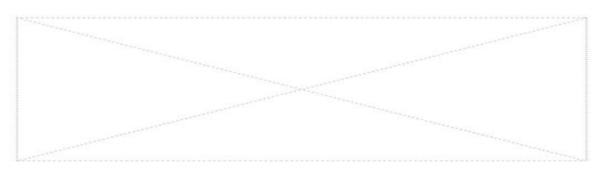
성과 구분	1단계(~3년) 목표	2단계(~6년) 목표
	■ 감염병 질환에 대한 표적 단백질 분해 기술 도입	■ 감염병 질환에 대한 표적 단백질 분해 기술 기반의 선도물질 도출
스크리닝 및 이미징 기술	■ 이미지 기반 Cell painting 기법 확립	■ 이미지 및 전사체 기반 신규 약물 발굴
고도화	 384 → 1536으로 초고속 에세이법 확보 	■ 대용량 이미지 분석 기반 신규 약물 발굴
	■ 3D 생체 모사체 기반 신규 타겟 발굴	■ 3D 생체 모사체 기반 치료제 Seed 화합물 제시
비임상 평가 기반 구축	■ 소동물 및 중동물 연구 기반 확보	 소동물 및 중동물 기반 유효성 평가 실시

2. 국가 감염병 위기 대응 Warm-base 핵심 거점화

🔲 추진배경 및 방향

- 코로나19 사태로 인해 주요국 및 WHO 등 감염병 관련 국제 기구는 차기 감염병 위기 대응을 위한 신속 프로토콜 구축 채택·추진 중
 - * CEPI 100 days Mission
- 우리나라도 세계적 트랜드에 맞추어 언제 다시 발생할지 모르는 미래 감염병 위기에 신속 대응을 위한 한국형 100일 훈련 준비 중
 - ※ [국가 R&D 모의훈련] 감염병 발생 직후 100일내 백신·치료제 후보물질의 임상진입이 가능한 체계를 구축하고 단계별 지원 및 연계를 점검하는 훈련 추진 (감염병 중장기 R&D 생태계고도화 방안, 2022, 관계부처 합동)
- (방향) 이에 코로나19에서 보여준 IPK의 최단기 후보물질 도출 경험과 기반 자원을 바탕으로 한국형 Warm-base* 핵심 거점화 추진
 - ※ 코로나19 상황에서 최단기에 우수 후보물질을 발굴한 배경에는 과거 사스, 메르스와 같은 famaily 병원체에 대한 사전연구가 있었기 때문에 가능
 - * 위기상황 발생시 빠르게 임상으로 진행시키기 위한 검증된 후보 확보와 국내외 개발 후보의 최적화 효력을 검증할 수 있는 시스템(assay)등 미리 확보해두는 개념

추진 과제별 세부 내용


2-1 병원체 우선순위 도출 및 IPK 신속화 프로토콜 확립

① 감염병 병원체 우선순위 도출

- 감염병 관련 전문가 위원회* 운영을 통한 국가 감염병 대응과 IPK에 특화된 맞춤형** 병원체 우선순위 도출
 - IPK 기존 연구기반을 토대로 Disease X를 대비하기 위한 맞춤형 병원체 우선순위 도출을 통한 연구 포트폴리오 반영
 - -국내·외 동향조사 및 전문가위원회를 통한 주기적으로 업데이트
 - * 바이러스연구기관협의체 및 감염병연구기획 위원회 등 기존 전문가 조직 활용
 - ** 바이러스기초연, 국립감염병연, 생명연 등 감염병 관련 연구기관과의 역할분담을 통한 IPK에 구축 하면 좋은 병원체 family 우선순위 도출

② IPK 위기 대응 신속 프로토콜 확립

- 거시적 국가 감염병 위기 대응 체계 내 기여 역할 확립과 동시에 미시적으로 IPK 내부의 신속 대응 프로토콜 확립
 - -((가칭) 'Just in 4 weeks') 코로나19 신속 대응 경험의 체계화 추진
 → 위기 발생 시 병원체 획득 ~ 후보물질 도출 단계별 프로세스를 체계화하고.
 - → 위기 발생 시 병원체 획득 ~ 후보물질 도출 단계별 프로세스들 체계화하고 국가 단위 프로토콜과의 연계성 확보
 - ※ 향후 신·변종 병원체 신속 획득을 위한 PN 네트워크와의 협력 체계 사전 구축

| 그림 V-2 | (가칭) Just in 4 Weeks 프로세스 개념

②-2 위기 대응형 Warm-base 구축 및 미해결 감염병 연구역량 강화

① 감염병 Warm-base 구축 및 확대

- 우선순위 목록을 기반으로 병원체 family 별 사전연구 진행을 통한 Warm−base 확보
 - 병원체별 기초기전 연구, 스크리닝 Assay 개발, 유효물질 도출, 최적화 단계를 거친 사전 연구를 통한 선제적 연구 결과 축적
 - 위기 발생 시 구축된 해당 바이러스 군 Warm Base 기반으로 신속한 후보물질 탐색

② 국내 미해결·상시 위협 감염병 치료제 개발 역량 강화

- 국가적 수요가 높은 감염병에 대한 분야별 기관 연구역량 고도화 지속
 - 원헬스 기반 병원체, 기후변화 대응 감염병, 리슈만편모층
 - 감염에 의한 생체 내 면역반응과 면역병리현상 연구, 백신 유효성
 - D형/E형 간염 바이러스 치료제 연구 및 간암 치료제 연구
 - 항생제 내성 치료제 연구. 다재내성 결핵 치료제 연구 등

2-3 감염병 시설 기반 특화 프로그램 및 감염병연구자원은행 구축·운영

① Open Lab 프로그램 운영 체계 구축

- (A)BL-3 오픈랩 운영을 위한 관리 규정·체계마련 → 매뉴얼 도출
 - 단기적으로 기업, 대학, 연구기관 등 Open Lab 잠재 수요자 기반의 Open Lab 기대 수요 조사를 통해 프로그램 상세 기획 추진, 시설 운영에 필요한 안전 가이드, 활용절차 등에 관한 구체적 매뉴얼 도출
 - 중장기적으로 감염병 연구자원 수집·공유 등 생물자원을 활용한 Open Lab 프로그램 고도화

② (A)BL-3 인프라 기반 감염병 전문 연구인력 양성

- IPK가 축적해온 감염병 특화 시설 운영 경험·노하우 기반의 전문 연구인력 양성
 - 감염병 특화 시설 기반의 현장형 전문인력 교육 수요 발굴 및 교육 프로그램 상세 기획 추진, (on-off line) 교재 제작, 교수 훈련 등 프로그램 운영 기반 구축
 - UST 학위과정과 연계하여 現 캠퍼스 수준의 기관 역할을 스쿨 인증 단계로 상향하고, 단독 전공 과정 운영을 통한 감염병×신약개발 특화 다인력 교육·배출 활성화

③ 수요 맞춤형 감염병 연구자원 수집 및 분양 제공

- 신변종 및 해외유입 감염병 관련 산업 요구 충족을 위한 국내외 감염병 연구자원
 (검체, 불활화병원체, 해외발생병원체) 확보 및 분양 활성화
 - ※ 연구자원 품질 신뢰성 강화를 위한 특성 분석 및 관리 체계 구축
 - ※ 분양체계 수립을 위한 감염병 자원 정보 관리 DB 구축
- 중장기적으로 국가 중앙은행 및 타 은행들과의 정보 공유를 위한 검체 및 병원체 정보 연계 시스템 구축 및 운영

④ 검체 및 병원체 자원 신속 수집을 위한 협력 체계 구축

- 감염병 검체 및 병원체 다양성 확보 및 신속 수집을 위한 국내외 네트워크 체계 구축
 - 감염병 확인진단 기관(ex, 병원, 보건환경연구원, 보건소 등)과의 협력 체계 구축을 통한 국내 비임상 수요 대응 감염병 검체 수집 네트워크 구축 및 운영
 - 국내 감염병 검체 수집 네트워크 고도화 및 PIBnet 네트워크를 활용한 국외 검체 수집 활성화

■ 주요 성과목표(안)

|표 V-2|[전략2] 주요 성과목표(안)

성과 구분	1단계(~3년) 목표	2단계(~6년) 목표
Disease X 또는 미해결	■ Disease X 또는 미해결 감염병 대응 유효물질 도출	■ Disease X 또는 미해결 감염병 대응 선도물질 확보
감염병 대응 치료제·백신	■ 면역 강화 신규 타겟 발굴	■ 타겟 조절 물질 확보
개발	■ 면역 조절 물질 스크리닝을 통한 Hit 발굴	■ 면역 강화 또는 억제 선도물질 확보
Open 플랫폼 기반 유효성 평가 지원	■ ABL3 시설 Open 플랫폼 운영 방법 확립	■ Open 플랫폼 기반 고위험 병원체 후보물질 연간 3종 이상 유효성 평가 실시
항생제 내성 치료제 개발	■ 항생제내성 대응 치료제 후보물질 개발 3종 이상	■ 항생제내성 대응 치료제 기술이전 1건 이상
	■ (검체+표준물질+병원체 등) 자원 수집 누적 500건(주)	■ (검체+표준물질+병원체 등) 자원 수집 누적 1,000건(주)
감염병 연구자원은행	■ 국내·협력 참여 기관 5개 기관 확보 (국내3, 국외2)	■ 국내·협력 참여 기관 10개 기관 확보 (국내5, 국외5)
	■ 감염병 검체 및 병원체 분양 연간 500 바이알 이상	■ 감염병 검체 및 병원체 분양 연간 10,000 바이알 이상

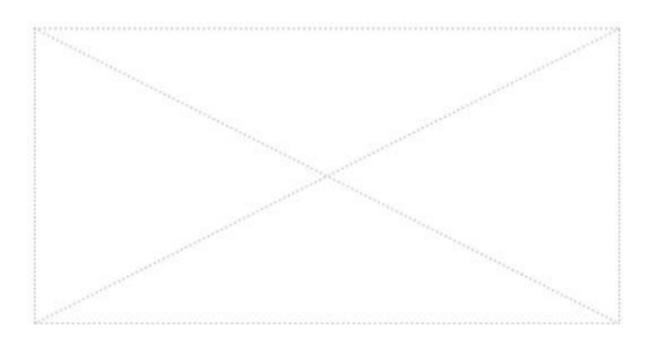
3. 고품질 감염병 빅데이터 생산 및 AI 융합형 분석 기지화

■ 추진배경 및 방향

- 최근 딥러닝기술, 데이터베이스 분석 기술 등 AI 기술 융합형 약물 발굴·평가 기술 적용으로 신속한 후보약물 도출 및 효능 분석이 가능
- 다만, AI 기술의 적용과 신뢰성 높은 결과 값 도출을 위해서는 다양한 관점에서 분석된 데이터 통합과 이의 효과적 분석 역량 확보 선행 필요
- (방향) 첨단 AI 기술과 IPK의 이미지 기반 스크리닝 역량 간 접목을 통한 국가 감염병 대응력 제고 및 고도화된 신약개발 중개연구 역량 확보

■ 추진 과제별 세부 내용

3-1 빅데이터 및 AI 활용 기반 구축


① 바이오인포매틱스 전담인력 확보 및 조직 신설

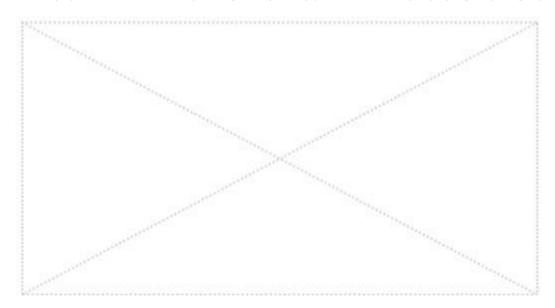
- AI 활용 분석 역량 보유 바이인포매틱스 전문인력 채용을 추진하고, 점진적 인력 확대를 통한 팀 단위 이상의 전담 조직화 추진
 - 초기 1~2명 내외의 바이오인포매틱스 전문인력 확보 추진
 - ※ 초기 바이오인포매틱스 전문인력은 신규 채용 또는 기존 일부 역량을 보유한 내부 인력의 생물정보학 교육프로그램 참여 지원을 통해 확보
 - 중장기적으로 중개연구본부 내 바이오인포매틱스 전문인력으로 구성된 전문 팀 (5명 이상)을 구성하고, 기초연구 및 타 중개연구 본부 연구활동 지원

② AI 기반 IPK 맞춤형 고품질 통합 빅데이터 구축

- 현재 분산화 되어 저장되어 있는 IPK 보유 DB를 통합·연계를 통해 향후 AI를 통해 분석·활용함으로써 가치를 제고할 수 있도록 구축
 - IPK 내 축적된 병원체 관련 유전, HTS, 동물모델 연구 등 IPK 다중 연구 정보 통합 빅데이터 구축
 - ※ 감염병 원인 병원체별 DB 구축을 통한 유사성 기반의 Disease X 대응
 - 구축된 통합 빅데이터의 국가 바이오스테이션 연계 추진

※ 1차적으로 IPK 내부 각 팀별 보유 연구 데이터의 통합 및 국가 바이오스테이션 등록을 위한 데이터 정제·표준화 추진 → 국가 바이오스테이션에 DB 등록 → 후속 연구데이터의 정례화된 수집·표준화 절차 마련을 통한 정기적인 국가 바이오스테이션 데이터 업로드 추진

|그림 V-3 | IPK 통합 빅데이터 구축 및 국가 바이오스테이션 연계 절차


3-2 AI·빅데이터 활용 신약개발 시스템 확립

① 빅데이터 지속 생성 기반 조성 및 AI 접목 분석·활용 기술 확보

- 분야별, 단계별 연구 활동에서 생성되는 연구 데이터를 빅데이터 통합DB와 연계 하여 수집하고, 체계적 분석·활용을 할 수 있는 AI 기반 기술 확보
 - -(AI 활용 이미지 기반 빅데이터 생성·활용) AMR 중심 감염세포 모델 빅데이터, 셀페인팅 기술 접목 초고감도 스크리닝 데이터, 3D 생체 모사체 기반 분석 등데이터의 확보 및 분석 시스템 구축
 - -(화학정보학 기반 치료제 개발 인프라 확보) BL-3 내 병원체 유전자 분석 인프라 및 화학정보학 기반 분자 모델링·가상스크리닝 기술 확보
 - -(유전체학, 전사체데이터, 화학정보학 융합 멀티오믹스 분석) 축적된 스크리닝데이터를 고성능으로 프로파일링·관리하는 다중오믹스 분석 시스템 구축 및 AI 기반 감염병 모델 생성·활용 기술 확보

② AI·빅데이터 활용 신약 개발 시스템 확립 및 검증

- IPK 빅데이터 기반 신약 개발 AI 모델 구축 및 활용성 검증
 - -미규명 병원체 후보 표적 단백질 선정, 3D 구조의 가상설계, 화합물 in silico 탐색을 통한 유효물질 도출, 화학정보학 기반 최적화 및 비임상 후보물질 도출
 - AI 기반 치료항체 항원 결정부 지도 작성, 변이주/유사병원체에 대한 효능 예측, 동물 모델에서 vaccination을 통한 항원 검증 및 효능 선별 등 맞춤형 치료항체 발굴

|그림 V-4 | AI 기반 신약개발 시스템 개요

■ 주요 성과목표(안)

|표 V-3 | [전략3] 주요 성과목표(안)

성과 구분	1단계(~3년) 목표	2단계(~6년) 목표
인공지능 기반 혁신 신약 개발	■ AI 기술 기반의 선도물질 개발	■ AI 기술 기반의 전임상 후보물질 도출
	■ AI 접목 항생제 내성 신규물질 효능 분석법 1건 개발	AI 기반 항생제 내셩 신규물질 분석법 플랫폼화 1건
	■ 동물모델 이미지 기반 분석 방법 연구	■ 동물모델 이미지 베이스 빅데이터 확보 및 분석
화합물 데이터 국가 표준화	■ 화합물 데이터 국가 표준화 작업 완료	■ 화합물 데이터 활용 신약 개발 유효 물질 도출

4. 우수·전문인력 확대 및 국제 협력 강화

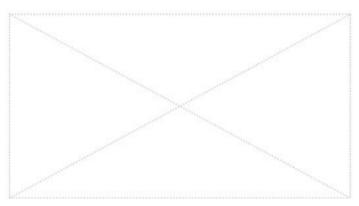
추진배경 및 방향

- IPK 조직 발전을 위한 인력 운영에 있어서 새로운 우수 연구인력의 확보 및 조직 성과의 가치 창출을 위한 BD 전문 인력 확보에 대한 내부적 공감대 형성
- 특히 개방형 혁신(Open innovation) 중심의 협력적 파트너십을 통한 신약 개발이 한 트랜드로 자리 잡음에 따라 새로운 우수인력의 유치와 동시에 외부 자원의 효과 적 활용을 위한 협력 역량 제고가 필수적
- (방향1) 우수 연구인력 확보를 위한 인사 체계 고도화 및 지속적인 IPK 성과의 가치제고를 위한 BD 조직 강화 추진
- (방향2) IPK의 국제 네트워크 자원을 활용한 기술 협력 및 획득, 기술이전 등 국내 연구개발 성과의 시장가치 창출을 지원 할 수 있는 다양한 프로그램 추진

추진 과제별 세부 내용

4-1 IPK 우수인력 확보를 위한 인사체계 개선

① 우수인력 유치 제약 해소를 위한 인사체계 점검·개선


- 우수 연구인력 유치를 위한 인건비 제도 점검·개선 추진
 - -고임금의 우수 연구인력 유인을 위한 현 임금체계 제도 점검 추진
 - ※ 현재 연구소장급 임금을 초과할 수 없는 임금 범위에 대한 세부적인 검토 추진
 - -조직 차원에서 우수 연구인력 유치를 위해 맞춤화된 투자 가능한 인건비 재원 획득·운용에 대한 체계적인 신규 지침(안) 마련
 - ※ 인사체계 개편 TF 구성을 통해 지침(안) 마련 (총무인사, 전략기획, 연구팀 등)

4-2 IPK 기술이전·사업화 전담조직 강화

① 단계적 기술사업화 전담조직 확대 및 역량 강화

- 사업개발 전담조직의 기술마케팅. 기술이전. 기술사업화 관련 전문역량 강화 추진
 - 전문 BD 인력 추가 확보 및 기존 인력의 기술사업화 관련 전문 교육프로그램참여 지원을 통한 사업화 역량 강화 추진

- 중장기적으로 포트폴리오 구축-목표 설정 및 평가-협상-기술이전 계약·관리 등 연구개발 전주기 단계별 관리 역량을 확보한 기술사업화 전담 조직으로 확대
- ※ 現 2명의 BD 전문인력 → '28년까지 5명 내외 규모로 확대

자료 : 제약산업학(명지문화사) 사업개발 전형적 거래업무 내용을 기반으로 연구사 일부 수정

|그림 V-5 | BD 전담조직의 주요 역할과 기능(안)

② 기술이전·사업화 지원 및 촉진 프로그램 기획·운영

- IPK 및 협력 기관에 대한 기술사업화 촉진을 위한 기술 거래 촉진 프로그램 다양화 추진 및 협력 기관 지원을 위한 사업화 역량 지원 서비스 구축
 - (협력 기관 기술 사업화 지원 서비스) 수요 기관의 특허, 기술가치평가, 경제성 평가 및 초기 기술기획을 지원하는 기술사업화 전문 서비스 프로그램 마련
 - ※ 신약개발 Value-up 플랫폼 수요 기관 대상 사업화 역량 지원 서비스 패키지 지원
 - (기술교류 및 마케팅 프로그램 운영) 공급-수요 간 매칭 활성화를 통한 기술이전 촉진, IPK의 기술공급 또는 기술확보-가치화 등을 추진하기 위한 기업 및 주요 연구기관과의 기술 교류 창구 구축
 - ※ (데모데이 행사) IPK 주도의 데모데이 형식의 성과 교류 프로그램 운영을 통한 기술교류 확대
 - ※ (기술거래 정보 시스템 기획 검토) 홈페이지 내 참여자 간 기술거래를 촉진하기 위한 상호 기술 모니터링, 협력 기관 수요 정보 제공 등을 지원하는 시스템 기획·운영 검토

4-3 PN 네트워크 기반 정보·자원 채널링 강화

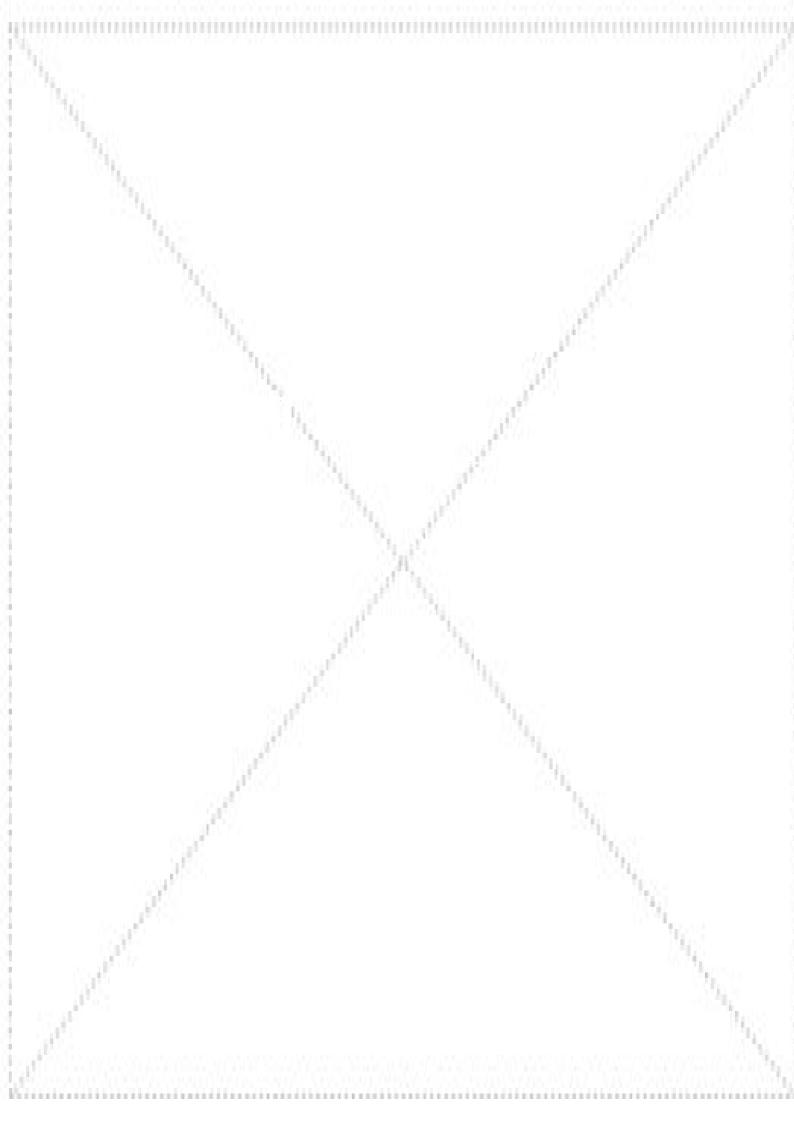
① PN 네트워크 기반 감염병 정보 모니터링 및 공유 기반 강화

● IPK 네트워크를 통해 수집되는 감염병 관련 발생 동향, 관련 연구동향 정보의 수집 및 공유 프로세스 고도화 추진

- PN 네트워크 기반의 모니터링이 가능한 정보 항목 발굴 및 국내·외 유사 정보 서비스 검토 등을 통한 모니터링 항목 구축
- ※ 항목별 필요 시 PN 회원국과의 정보 공유 업무 사전협약 추진
- -국제 감염병 발생 동향, 주요국 연구개발+정책 대응 등 국제 동향에 대한 심층 정보 수집·공유 활성화
- ※ IPK 홈페이지 활용을 통한 전문 정보 서비스 제공

② 국제 공동연구 주제발굴·연계 활성화 방안 마련

- PN 네트워크 기반의 국제 연구 펀딩 정보 모니터링 및 협력 연구 플랫폼 구축·운영
 - PN 네트워크 기반의 국제 협력형 연구참여가 가능한 주요 펀딩 및 해외 우수 연구자 정보에 대한 모니터링 체계 구축
 - 우수 연구자들 간 협력·공동연구 촉진을 위한 협력형 과제 참여를 용이하게 지원할 온라인 플랫폼 활용 등 활성화 방안 마련
 - ※ (벤치마킹) IT쪽 개발자 프리랜서 TF 구성을 위한 플랫폼 사이트(wanted)와 같이 국제 협력 연구 펀딩 및 연구자 모집 플랫폼 검토


③ 국내·외 협력 기관의 기초·중개연구 수요 발굴 및 지원

- IPK 보유 네트워크 기반의 양방향(국내 ↔ 국외) 기초·중개연구 수요에 대한 맞춤형 지원 연계
 - -국내·외 주요 기초·중개연구 지원 기관 정보 DB 구축 및 국내·외 수요 기관과 서비스 제공 기관 간의 연계 지원
 - -국제적 세미나 운영 등 국내·외 기초·중개연구 지식공유 채널 구축

■ 주요 성과목표(안)

| 표 V-4 | [전략3] 주요 성과목표(안)

성과 구분	1단계(~3년) 목표	2단계(~6년) 목표			
국제협력 기반 아시아 지역사회 항생제 내성 분석	아시아 4개국의 지역사회 항생제내성 분석 및 분석 데이터 공유 시스템 1건 구축	• 아시아 6개국의 지역사회 항생제내성 분석 및 분석 데이터 1건 구축			
PN 네트워크 기반	 감염병 정보 공유 및 공동연구협의 사전협약 연간 1건 	■ 감염병 정보 공유 및 공동연구협의 사전협약 연간 1건			
감염병 정보 공유 기반 확보	■ 감염병 정보 공유 정기회의 연 2회	■ 감염병 정보 공유 정기회의 연 2회, 정보공유 홈페이지 구축			

1. 추진일정 및 예산(안)

1.1. 과제별 추진일정(안)

전략 및 추진 과제)23	$\bar{2}$		20			26		27	2028
[전략 [1]] 신약기	배발 기초성과 초고속 Value−up 플랫폼화		2 0 -	<u> </u>	<u> </u>	<u> </u>	0 5	E 1 2	4 O T	1 2	0 4	L D 0 T
1. 신약개발 원-스탑	① Value-up 플랫폼 개념 설계		플 상서	랫폼 기화	힉							
Value-up 플랫폼	② 스크리닝 및 이미징 기술 고도화					스크리	닝등	및 이	미징	기술 .	고도화	
기반 구축	③ 의약화학 및 비임상 기반 강화					의약	화학	및ㅂ	임상	기반	강화	
2. 플랫폼 활용 국가				П	П	우수	기초		성과	- 실-	용화 연	· [계 지원
기초연구 성과 및 수요 Value-up 활성화	① 플랫폼 기반 국가 기초연구성과 고도화 및 기업 지원 활성화						· 학·	·연 주	두문형	수요	대응	지원
	고 암염병 위기 대응 Warm−base 핵심 거점	화										
1. 병원체 우선순위 도출 및	① 감염병 병원체 우선순위 도출	٥	우선순 도출	위								
도굴 덫 IPK신속화 프로토콜 확립	② IPK 위기대응 신속 프로토콜 확립			· 토콜 누립	7.							
2. 위기 대응형 Warm-base 구축	① 감염병 Warm-base 구축·확대			미	배 위	기 대는) 형	warn	ı-bas	e 지	속 구축	r i
및 미해결 감염병 연구역량 강화	② 국내 미해결·상시 위협 감염병 치료제 개발 역량 강화		미해결 상시 위협 감염병 치료제 연구 지속							속		
	① Open Lab 프로그램 운영 체계 구축	<u>-</u> ک	프로그 }세 2	_램 기획		Open	Lab	운영	활성	화 및	고도	화
3. 감염병 시설 기반 특화 프로그램 및	② (A)BL-3 인프라 기반 감염병 전문 연구인력 양성	U	JST <i>스</i> 신증호	·쿨 득	(감염	병) /	신약기	H발 :	전공 >	전문인]력 교	육·배출
감염병연구자원은행 구축·운영	③ 수요 맞춤형 감염병 연구자원 수집 및 분양 제공	수처	-집·년 계 -	를 양 구축	연	[구자유 확보	į		보시스 연계	템지	}원 수 지속 확	집·공유 발성화
, , , , ,	④ 검체 및 병원체자원 신속 수집을 위한 협력 체계 구축			국١	H·외	협력	네트	워크	구축		네트· 확	
[전략 ③] 고품질	일 감염병 빅데이터 생산 및 AI 융합형 분	석		지:								
1. 빅데이터 및 AI 활용	① 바이오인포매틱스 전담인력 확보 및 조직 신설		인로	규모 1확년	-		인포 직 후	막대	스 	전 및	計 조조 기능 :	운영 고도화
기반 구축	② AI 기반 IPK 맞춤형 고품질 통합 빅데이터 구축		3	합	빅데 C 구축			Ш		Ш		
2. AI·빅데이터 활용	① 박데이터 지속 생성 기반 조성 및 AI 접목 분삭활용 기술 확보					빅데이 생성 안정화					속 생신 ·보·고!	
신약개발 시스템 확립	② AI·빅데이터 활용 신약 개발 시스템 확립 및 검증							소 모	<u>l</u> 약개 델 구	발 축 신	AI 기 일약개별	기반 발 추진
[전략 4] 우수·	전문인력 확대 및 국제 협력 강화											
1. IPK 우수인력 확보를 위한 인사체계 개선	① 우수인력 유치 제약 해소를 위한 인사체계 점검·개선]사 계 선								
2. IPK 기술이전·사업화	① 단계적 기술시업화 전담조직 확대 및 역량 강화]력 - - - 가		기술/	사업회 지속	화 · 확디	1	전담 및 기	조직 (능 고!	운영 도화
전담조직 강화	② 기술이전·사업화 지원 및 촉진 프로그램 기획·운영				서 7	·업화 비스 기획		업화	지원, 프로	기술 그램	교류, 운영	마케팅
	① PN 네트워크 기반 감염병 정보 모니터링 및 공유 기반 강화		모니 항목	 	를 시	정보 수집·공 스템	유 구축		정,	보 항 품질	목 확대 고도화	H 타
3. PN 네트워크 기반 정보·자원 채널링 강화	② 국제 공동연구 주제발굴·연계 플랫폼 마련		모니체계	터링 구=	를 시	정보 수집·공 스템	유 구축	ą	국제 등	공동연 랫폼	구 촉	진 및 -
	③ 국내·외 협력 기관의 기초·중개연구 수요 발굴 및 지원			지위 DB	원기관 구축	<u>+</u>	수및	요 지 국제 연기	속 빌 적 세 베 채나	'굴·공 미나 결링 7	급 연기 운영 - 강화	비등

1.2. 예산규모

1안

	전	연간 예산규모 (추정)	비고		
	신약개발 기초성과			신규 사업으로	
1	초고속 Value-up 플랫폼화	② 플랫폼 활용 국가 기초연구 성과 및 수요 Value-up 활성화	30억	추진 검토	
		① 병원체 우선순위 도출 및 IPK신속화 프로토콜 확립		기존 블록펀딩	
2	국가 감염병 위기 대응	② 위기 대응형 Warm-base 구축 및 미해결 감염병 연구역량 강화	40억	들속된당 예산 활용	
	Warm-base 핵심 거점화			자원센터 후속 운영사업 으로 추진 기대	
	고품질 감염병 빅데이터 생산			기존 블록펀딩	
3	및 AI 융합형 분석 기지화	② AI·빅데이터 활용 신약개발 시스템 확립	15억	예산 활용	
		① IPK 우수인력 확보를 위한 인사체계 개선		기존	
4	우수·전문인력 확대 및 국제 협력 전문화	② IPK 기술이전·사업화 전담조직 강화	5억	블록펀딩 예산	
	87 224	② PN 네트워크 기반 정보·자원 채널링 강화		활용	
		합계	120억 규모		

2안

	전	연간 예산규모 (추정)	비고	
1	신약개발 기초성과 초고속 Value-up	① 신약개발 원-스탑 Value-up 플랫폼 기반 구축	25억	기존 블록펀딩 예산 활용을 통한 기반 구축
	플랫폼화	② 플랫폼 활용 국가 기초연구 성과 및 수요 Value-up 활성화	10억	향후 신규 사업으로 추진 검토
2	국가 감염병 위기 대응	 □ 병원체 우선순위 도출 및 IPK신속화 프로토콜 확립 □ 위기 대응형 Warm-base 구축 및 미해결 감염병 연구역량 강화 	40억	기존 블록펀딩 예산 활용
2	Warm-base 핵심 거점화			자원센터 후속 운영사업 으로 추진 기대
3	고품질 감염병 빅데이터 생산 및 AI 융합형 분석 기지화	① 빅데이터 및 AI 활용 기반 구축② AI·빅데이터 활용 신약개발 시스템 확립	10억	신규사업 또는 지정과제로 추진 검토
4	우수·전문인력 확대 및 국제 협력 강화	 □ IPK 우수인력 확보를 위한 인사체계 개선 □ IPK 기술이전·사업화 전담조직 강화 □ PN 네트워크 기반 정보·자원 채널링 강화 	5억	기존 블록펀딩 예산 활용
		합계	120억 규모	

2. 기대효과

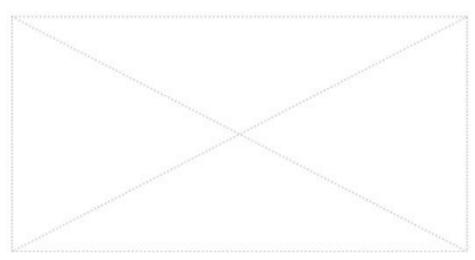
🔲 국가 기여 관점

- 기초-실용화 간 병목 해소, 우수 후보물질 발굴. 기술이전 촉진을 통한 국가 신약 파이프라인 경쟁력 제고와 제약 산업 활성화에 기여
- 미래 감염병 위기 대응을 신속하게 하기 위한 국가 차원의 백신·치료제 개발 신속화 프로토콜 고도화에 기여
- 감염병 특화 시설 기반의 전문인력 양성 및 기업 지원을 통한 국내 감염병 치료제 기술력 강화, 글로벌 시장 진출 기회 제고

🔳 IPK 기관 운영 관점

- 20년 간 누적해온 기관 역량의 효과적 활용을 통한 기관 위상 제고 및 국가 감염병&신약 개발 R&D 생태계 내 정체성 확립
- 신규 사업 참여 기회 및 고도화된 서비스 기반의 추가적인 예산 확보 기회 마련을 통한 기관 운영 안정성 개선 기대

기대 변화 모습 (As-is → To-be)


구분	As-is
핵심 방향	◆ 감염병 중심 연구기관 ◆ 내부 포트폴리오 중심
예산	 과기부 블록펀딩 의존도 ↑ ※ 과기부 블록펀딩 예산 비중 약 49.9% ('22년 기준)
연구활동	• 현안형 감염병, 소외 감염병 질환에 대한 기초연구-중개연구
기능 조직	• 영역 확장을 위한 바이오인포 매틱스, BD 기능 부족 ※ 바이오인포매틱스 인력: 0명 ※ BD 인력: 2명
인프라 활용	◆ 내부 연구 활용 중심

To-be
◆ 신약개발 지원 플랫폼으로 역할 이미지 변화◆ 기업, 생태계 지원 중심의 국가 기여 제고
◆ 신속 위기 대응 거점으로 변화
• IPK 예산 확대 및 다변화 ※ 과기부 블록펀딩 예산 비중 약 40% 내외로 축소
▶ ※ 신규 지원 사업 확보 (약 15억 규모)※ 국내 과제 수주 확대 ('28년 약 50억 규모)
※ 해외 과제 수주 확대 ('28년 약 10억 규모)
※ 서비스 기반 수입 ('28년 약 26억 규모)
◆ 위기대응형 우선순위 중심 감염병 질환 기초 연구-중개연구
◆ 빅데이터 기반 AI 융합형 치료제 개발 연구
◆ BD 전담조직 기반 연구성과 가치 제고
※ BD 인력 : 5명 이상 확보
◆ 바이오인포매틱스 전문인력 기반 AI 기반 연구 개발 신속화
※ 바이오인포매틱스 인력 : 5명 이상 확보
• Open innovation 기반 공동활용, 협력 연구 기반으로 활용

3. 예산 다각화·확대 전략 및 추가 제언

3.1. 기관 재원 다양화 및 확대 방안

- 현재 IPK의 예산 구조를 점검하고, 장기적 관점의 확대 가능한 예산 구조 및 범위를 검토함으로써 IPK 중장기 발전전략 추진을 위한 현실적 예산(안) 확인
 - (현재 예산 구조) IPK의 최근 한 해 예산 규모는 서비스 수입료를 포함하여, 약 137.6억원 규모로 파악('21년 기준, 인프라성 예산 제외)
 - -'21년 기준 IPK 제공 자료에 따른 과제예산 및 서비스 수입료 합계 금액은 181.8억원 규모로 조사, 단 '바이러스연구자원센터' 예산 및 '바이오 Core facility 구축사업'은 특성 상 종료 이후 급감될 예산으로 규모 파악에서 제외
 - 이에 IPK의 일반적인 예산 규모는 최근 연도 기준으로 137.6억원 규모로 파악되며, 과기부 블록펀딩이 66.6억원(48.4%), 국내 수주형 과제 39.9억원(29.0%), 해외 수주 8.9억원(6.5%), 서비스 수입료 22.2억원(16.2%)로 조사

자료 : IPK 내부자료

<'21년도 기준 IPK 예산 유형별 비중>

- (예산 확대 방안) 장기적 관점에서 현재 과기부 블럭펀딩 예산은 일부 감소 또는 유지하고, 신규 사업 기획 및 추진, 국내 과제 수주 확대, 국제 과제 수주 확대, 서비스 수입료 확대 등 분야별 예산 확대를 위한 접근 방안 마련
 - -(신규사업 or 지정 과제 추가 확보) 신약개발 지원 플랫폼, AI기반 신약·감염병 연구 관련 신규사업 기획 또는 기관 지정 과제를 통한 추가 예산 확보(약 10~15억 규모)

- ※ 신약개발 Value-up 플랫폼 지원과 유사성을 가진 기존 사업 중 질환별 글로벌 수준의 수요자 맞춤형 유효성평가 서비스를 지원하는 질환유효성평가지원센터 사업의 경우 지정 기관 당 연간 15억 규모의 국고 예산이 투입됨에 따라 이를 벤치마킹하여 연간 10~15억 규모에서 시범 추진
- -(부처별 연구과제 참여 확대) PI급 인력 확보 노력과 병행하여, IPK 연구 유관 분야 사업에 대한 모니터링 및 신규 과제 제안 참여 지속 추진, 인력 규모 고려 시 '28년까지 50.4억원 규모까지 확대 가능 추정

참고

PI급 인력 확대 규모 및 수주 과제 예산 확대 범위 추정

① 기관 박사급 인력 당 수주 과제 예산 capability 가정

■ '18년~'21년 간 IPK 박사급 인력 당 평균 1.2억원의 국내 과제 수주

[박사급 인력 당 과제 수주액 규모]

구분	'18	'19	'20	'21	평균
국내 과제 수주 규모	29.9	19.2	39.0	39.9	32.0
박사급 인력 수	24	23	25	31	26
박사급 인력 당 국내 과제 수주액 규모	1.2	0.8	1.6	1.3	1.2

② 기관 박사급 인력 확대 규모 추정(~'28년까지)

■ '18년~'22년 간 박사급 인력 증가 추이(CAGR)를 기반으로 '28년까지 박사급 인력 규모 증가분을 추정한 결과 총 42명까지 증가가 가능할 것으로 추정

[박사급 인력 확대 규모 추정]

구분	'18	'19	'20	'21	'22	CAGR	'23	'24	'25	'26	'27	'28
박사급 인력 수	24	23	25	31	30	5.7%						
추정 값							32	34	35	38	39	42

^{*} 추정값은 소수점 이하 반올림

③ PI급 인력 확대에 따른 예산 확대 규모 추정 ('~28년까지)

■ '28년도 기준 IPK의 박사급 인력이 42명 규모로 확장됨을 가정 시 국내 과제 수주 예산 규모는 50.4억원(42명×1.2억원/명) 규모로 확대 가능할 것으로 예상

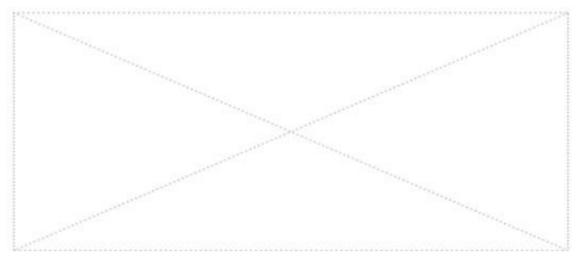
참고	IPK 연구분야 유관	국내 사업 현황 및	활용 관점
세부사업	내역사업	예산(백만원)	활용 관점
	미래감염병기술개발	33,162(25개 과제)	파스퇴르 지원과제 유지유관 과제 협력 참여
바이오의료기술 개발사업	백신허브기반 구축	8,100(4개 과제)	-
	국가전임상시험구축	13,300(2개 과제)	■ 파스퇴르 영역 확대를 통한 예산 배부 증대
신변종 감염병	대응 플랫폼 핵심 기술개발 사업	13,600(12개 과제)	파스퇴르 참여 과제 발굴24년 신규 플랫폼 과제 참여

다부처 코	· 가생명연구자원 선진화사업	66,842(144개 과제)	■ 파스퇴르 참여과제 발굴			
٦. ج]병중심중개연구사업	2,400(8개 과제)	■ 파스퇴르 참여과제 발굴			
혁신신'	약 기초기반기술 개발사업	7,050(33개 과제)	■ 과제 제안 및 참여			
감염병 차세대	백신 기초원천 핵심기술개발사업	9,100(26개 과제)	■ 면역 기반 연구 참여			
2.1.2	백신자급화 기술개발	6,750	_			
감염병 예방·치료	의료현장 맞춤형 진단 기술개발	1,275	■ 기업 협력 기반 참여(수탁과제)			
기술개발사업	미해결 치료제 도전 기술개발	5,025	■ 기업 협력 기반 참여(수탁과제)			
보건위기 대응	영장류 활용 백신 치료제 신속 약리시험기법 실증개발	1,800	-			
신속 비임상시험 실증개발 사업	영장류 활용 백신 치료제 신속 독성시험기법 실증개발	1,200	_			
RNA 바이러스	감염병(Disease X)대비 항바이러스 치료제 개발	3,750	■ 치료제 후보물질 발굴(수탁과제)			
	발사업 (면역증강제, 신개념 접종기술, 백신 화 기술, 부작용 예측기술)	2,550				
신속	범용백신 기술개발 사업	3,000				
신 변종 감염	병 대응 mRNA 백신 임상지원	10,000				
뎅기열 등), (치료용	가치 백신 개발(미충족 : AIDS, 말라리아, 백신개발 : 암·중추신경계질환/대사성/면역성 성인백신(고령/만성질환/면역억제치료환자 등)	3,300	■ 면역기반 분야 기업 협력 기반 참여 (수탁과제)			
	신변종 및 국가관리 감염병 연구					
감염병관리기술	국가표준병원체자원 개발 및 활용	16 222	■ 수요제기+주문 기반 참여			
개발사업	One Health 개념의 항생제 내성균 조사연구	16,333	(표준품 수요 존재)			
	미해결 및 만성감염 질환 연구					
	신변종 및 급만성 바이러스 감염질환 극복					
국가 위기초래 바이러스 감염병	바이러스 감염병 극복 임상근거 창출	14.201	● 수요제기+주문 기반 참여			
극복 기술개발 연구	항바이러스제 약물평가 실험실 운영	11,201	- 무료에서 무료 기단 함께			
	신종 감염병 대응 비임상 평가 및 시료생산 연구					
공공백신개발	민간개발 기피백신 공공개발	10,064				
지원	공공백신개발지원센터 활용	10,004				
신기술 기반 배시 프래포	mRNA 백신 플랫폼 선도기술 도임	11 977	■ 백신 비임상 분야 지원 가능성			
백신 플랫폼 개발지원 사업 	mRNA 백신 등 효능평가지원	11,277	검토 필요			
신변종 감염병 대응 mRNA 백신 임상지원	mRNA 백신 비임상 연구지원	6,000				

- -(국제 과제 기반의 연구비 확대) 국제 네트워크 기반의 펀딩 모니터링 및 국제 공동연구(양자, 다자간) 과제 참여 확대를 통한 국제 재원 확보
- ※ '20년 기준 4.7억원 → '21년 기준 8.9억원 → '22년 기준 4.3억원 규모로 등락폭 추이를 고려하되 도전적 목표로서 '28년까지 10억원 이상을 해외 재원으로 확보하는 것으로 가정
- -(서비스 수입 확대) 초고속·대용량 스크리닝 플랫폼 기반의 서비스 역량 확장(기술 고도화, 홈페이지 활용 서비스 홍보·운영 체계 강화 등)을 통한 FFS 수입 확대

참고

서비스 수입료 증가 추이에 따른 '28년 예상 수입 규모 추정


> 기술지원 서비스 수입료 확대 규모 추정 (~'28년까지)

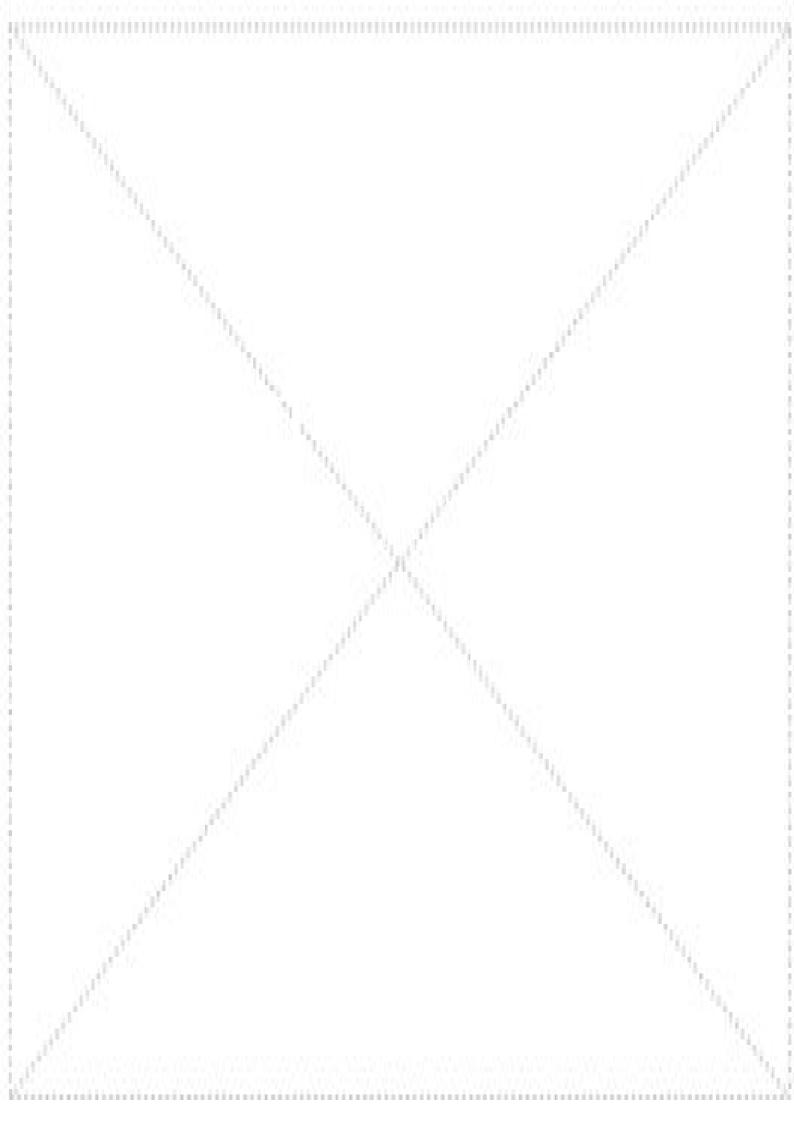
• '18년~'21년 간 기술서비스 수입액 증가 추이(CAGR)를 기반으로 '28년까지 서비스 수입액 증가분을 추정한 결과 매년 2.0%의 성장을 보이며 총 25.5억원 규모까지 증가가 가능할 것으로 추정

[フ	[숙서	田人	. 수입액	추정]
1.1	-		- 1 6 7	1 0 1

구분	'18	'19	'20	'21	CAGR	'22	'23	'24	'25	'26	'27	'28
기술서비스 수입액(억원)	20.9	18.5	21.2	22.2	2.0%							
추정 값						22.7	23.1	23.6	24.0	24.5	25.0	25.5

- (종합) PI급 인력 확보와 더불어 국가 연구과제에 대한 지속적인 제안·참여 노력, 신규 사업 발굴·기획, 서비스 수입 확대 등의 예산 확대 노력을 기반으로 향후 '28년에는 161~171억원 규모까지 가능할 것으로 기대
 - (기관 예산 확대 규모) 약 137.6억원 규모 수준에서 '28년에는 분야별 예산 확대 노력을 기반으로 161~171억원까지 확대 가능 범위로 설정, 이의 실현 시 과기부 블록펀딩 예산 비중은 48.4%('21년)에서 약 40.3~40.9% 수준까지 감소 예상
 - ※ 바이러스연구자원센터 운영비 예산 요구액 60억원(현재 미확정) 규모 포함 시 전체 규모는 약 225억원까지 증가 가능

자료 : IPK 내부자료


<IPK 예산 다양화 및 확대 방향>

3.2. 기관 발전을 위한 추가 제언

- (기관 성과 관리 및 환류 체계 마련) 기관 예산 확보의 당위성 제고를 위해서는 더욱 체계적인 성과 목표 설정(국가 기여 관점)과 성과 점검 체계를 통해 대외적으로 긍정적 인식 제고에 활용 필요
 - 현재 과기부 블록펀딩은 바이오의료기술개발사업의 세부사업 단위로 IPK의 성과를 표면적으로 관리하기에는 레벨 수준이 낮음
 - 이에 자체적으로 더욱 체계화된 성과 목표 수립(R&D사업 성과 평가에 준하는 수준)을 통해 국가 단위 관점에서 파급효과 및 성과 기여 정도를 파악·관리함으로써 목적 부합성이 높은 성과 창출 향상과 IPK 예산 지원에 대한 근거 확보 추진
- (기업과의 밀착 네트워킹을 통한 수요 발굴 필요) 향후 IPK의 축적된 역량을 기반으로 기업·대학 등의 기초성과를 Value-up 시키는 플랫폼 사업 운영 에는 중점 지원 분야 발굴을 위한 수요 조사 선행 필요
 - 신규 사업 기획을 위한 실질적인 현장 수요 발굴 추진 선행 필요, 특히 IPK가 위치한 지역 내 바이오 기업과의 긴밀한 커넥션을 확보하고, Value-up 프로그램 상세 기획에 요구되는 현장의 니즈 파악 및 기획에 환류하는 작업 선행 필요
 - 이를 통해 사업의 규모, 목적, 단계, 추진체계, 지원 범위 등을 구체화하고, 기업 수요 맞춤형 프로그램 기획을 통한 사업 추진의 타당성 제고 추진
- (PN 네트워크 간 정보교류 활성화) PN 네트워크 간의 연구현황 정보, 기관 운영에 관한 이슈 및 해결 지원 등 긴밀한 협력 체계 구축
 - 표면적인 정보 수준에서 획득하기 어려운 내부적인 상황에 대해 상호 이해를 바탕
 으로 정보 OPEN형 관계로 점진적 발전 필요
 - 연구활동에 대한 상호 보유 역량의 지원 등 네트워크 파워를 높이기 위한 적극적 협력 체계와 핵심 역할 분담 등 체계적인 협력 구도 구축 중요
 - 연구분야 외 기관 경영 관점에서도 각 국가별 연구소의 차별화된 운영 방식 등 정보 교류를 통해 안정화된 연구 재원, 인력 확보 등 운영 전략 수립에 활용 필요

※ PN 네트워크 단위의 종합적인 현황 파악을 공유할 수 있는 실태조사 수준 정보구축·공유 체계화

- (우수 인력 확보를 위한 투자 관점의 기관 노력 필요) 우수 인력 유치를 위한 임금체계에 대한 투자 관점의 내부 노력 필요
 - 연구인력 특성 상 성과창출까지 일정 임계기간이 요구됨에 따라 우수 인력 유치 시 유인책으로 고임금 지급 시 일정 기간 기관 내 재원에서 지급이 가능하도록 선제적으로 임금체계를 검토하고, 관련 프로세스를 선 구축하는 것이 필요
- (국내·외 R&D 과제에 대한 체계적 모니터링 프로세스 구축) 다양한 부처에서 추진하는 R&D과제 및 해외 재원 획득을 목표로 지속적인 유관 사업모니터링과 내부 공유 체계 구축 필요
 - 정례화된 R&D 사업 모니터링과 IPK 팀 내 공유를 체계화함으로써 참여 가능한 R&D 사업 기회를 지속적으로 추적·관찰
 - 전략기획, BD 전문인력과의 협업을 통해 전략적인 사업 제안 역량을 고도화하고,
 사업 수주력을 높일 수 있는 내부 교육프로그램 등 병행 추진

1. 감염병 발생 동향

1 신변종

■ 급성호흡기바이러스 관련 병원체 및 질화 발생 현황

● (신종감염병증후군(코로나19 등)) 중국 우한에서 보고된 이후 1~2개월 짧은 시차로 전세계로 퍼지면서 확진자·사망자 수가 지속적 증가했으며, 그에 따른 피해 발생

|표| 코로나19 발생 사례 및 피해 현황(22.10.14)

병원체 종류	치사율	국제 피	해 현황	국내 피해 현황		
স্থাপ তিন	시시[担 	확진자	사망자	확진자	사망자	
코로나19 바이러스	1.1%(전세계) 0.1%(국내)	623,099,545 (진행 중)	6,562,162 (진행 중)	25,052,677 (진행 중)	28,748 (진행 중)	

자료: 코로나공식 홈페이지, 보건복지부, 질병관리청, Johns Hopkins CSSE 질병관리청('22.10.14. 기준)

- (중증급성호흡기증후군(SARS)) '02년 중국을 시작으로 전세계에 급속 확산되어, '02년 11월부터 '03년 7월까지 총 8,098명 발생 및 774명(9.6%) 사망의 치명률 발생
 - 발병 초기 전세계로 전파되어 홍콩, 싱가포르, 대만, 베트남 등 동남아시아 지역 및 북미에서 다수 환자 발생
 - ※ '03년 3월 12일 WHO는 전 세계를 대상으로 사스(SARS)의 경보를 보내고 감시체계 운영

│표│주요 국가별 사스 추정 환자 발생 현황

국가별	추정환자	사망자	국가명	추정환자	사망자
중국	5,327	349	미국	27	_
<u> </u>	1,755	299	영국	4	_
대만	346	37	베트남	63	5
필리핀	14	2	한국	3	0
싱가포르	238	33	몽골	9	0

자료: WHO. 2003

● (중동호흡기증후군(MERS)) '15년 전세계적 대유행 사태 때 국내 유입 후 전파· 확산되면서 국내 185명 감염자 발생 및 38명 사망하였고, 2018년 확진자 1명 재발생

│표│급성호흡기바이러스 병원체/질환 국내 발생 현황

(단위: 신고건수, %)

감염병명	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	전년 대비 중감률
신종감염병 증후군	0	0	0	0	0	0	0	0	0	60,726	570,07 2	△83,87 6
중증급성 호흡기증후군 (SARS)	0	0	0	0	0	0	0	0	0	0	0	_
중동호흡기 증후군 (MERS)	_	_	_		185	0	0	1	0	0	0	_

자료: 질병관리청, 2021 감염병감시 연보, 2022.

■ 인플루엔자 질환 발생 현황

- (계절성 인플루엔자) 세계적으로 매년 약 10억명(5~15%)가 감염되고, 이 중 3~5백만 명의 중증 환자가 발생하고 25~50만 명이 사망
- (신종인플루엔자(H1N1)) 2009년 대 유행 이후, 최근 국내 발생 사례는 없음
- (동물인플루엔자 인체감염증(H5Nx, H7N9)) 중국을 중심으로 동남아시아 일부 지역 등에서 발생하고 있으며, 특히 H5N1과 H7N9은 지속 발생하고 있으며, 국내의 고위험성 조류 인플루엔자는 H5N1과 H5N8의 두 타입이 발생하였으나, 인체감염 사례는 없음

│표│인플루엔자 병원체/질환 국내 발생 현황

(단위: 발생환자(계절성 인플루엔자), 신고건수, %)

감염병명	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	전년 대비 중감률
계절성 인플루엔자			_	_			1,418,79 2	2,260,29	2,315,43 4	1,334,47 4	14,754	△9,889.4 %
신종 인플루엔자	0	0	0	0	0	0	0	0	0	0	0	_
동물 인플루엔자 인체감염증	0	0	0	0	0	0	0	0	0	0	0	_

자료: (계절성인플루엔자) 건강보험심사평가원, 보건의료빅데이터개방시스템, '22

(동물인플루엔자 인체감염증, 신종 인플루엔자) 질병관리청, 2021 감염병감시 연보, 2022.

- (니파/헨니파 바이러스 감염증) 1998년 말레이시아에서 첫 발생된 급성, 열성 바이러스성 인수공통 전염병으로, 국외에서 말레이시아와 싱가포르에서 발생이 보고되었으며, 국내는 발생 보고 없음
 - ※ 신종 헨니파바이러스(랑야 바이러스) 발생 보고(중국. `22)
- (원숭이 두창) 전 세계 원숭이 두창 발병은 47개국에서 확진자 4,106명으로 유럽 지역에서만 100명 이상 두창 사례 수가 보고된 국가는 미국, 스페인, 독일 등 2,700명 이상으로 보고되며, 국내에서는 '22년 내국인 1명이 최초 양성으로 확인
 - ※ 보고 현황 : 미국 910명, 스페인, 736명, 독일 676명, 포르투갈 348명, 프랑스 330명, 캐나다 235명, 네덜란드 200명, 이탈리아 127명 등 보고

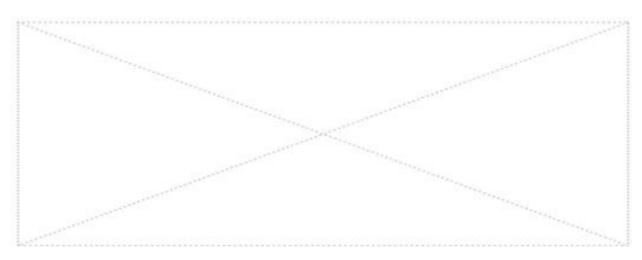
● 출혈열 바이러스 감염증*

- ※ 에볼라바이러스병, 마버그열, 라싸열, 크리미언 콩고 출혈열, 남아메리카 출혈열, 리프트밸리열
- (에볼라 바이러스병) 최근 3년('18년~'20년) 간 모두 3차례(9차~11차)의 유행이 DR콩고에서 보고되었으며, 10차 유행('18년 5월~'20년 5월 발생 3,481명, 사망 2,299명, 치명률 66%)은 현재까지 심각한 에볼라 유행양상을 보이며 많은 사망자 발생

| 표 | 해외 에볼라바이러스병 발생 현황('18~'20)

발생시기	발생국가	유형	발생(명)	사망(명)	치명률(%)
2020.6.~2020. 11.	DR콩고	자이레	130	55	42.3
2018.5.~2020 .5.	DR콩고	자이레	3,470	2,287	65.9
2018.4.~2018 .6.	DR콩고	자이레	54	33	61.1

자료 : 역학·관리보고서2 (제14권 제11호) 2021.03.11

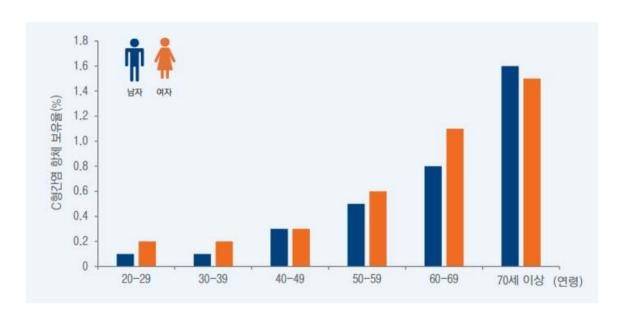

-(마버그열) 1967년 독일과 세르비아에서 필로바이러스(Filovirus) 계열의 유전적으로 독특한 동물원성(animal-borne) 바이러스인 마버그바이러스에 의해 발생하였으며, 드물게 발생하지만 감염되면 치명률이 높은 중증 감염병이나 현재까지 국내 발생 없음

- -(라싸열) 국내 라싸열 1차 감염 발생 가능성은 없는 것으로 판단되며, 이는 현재 까지 국내 라싸열 동물숙주인 Mastomys sp. rodents 미서식에 근거
- -(남아메리카 출혈열) 1958년 아르헨티나에서 첫 발견, 매개 설치류 서식지 중심에서 주로 발생하며, 지역별로 아르헨티나, 볼리비아, 브라질, 베네수에나 등다양한 병원체로 나타났으며, 국내에서는 발생 보고 없음
- -(크리미안콩고 출혈열) 1944년 소비에트연방의 크림반도에서 발견되었으며, 질병 발견 후 산발적으로 '02년~'08년 동안 발생 증가하여 7년 동안 1,000명 이상 확진환자 발생 보고(치명률 3.2%)
- -(리프트밸리열) 1931년 첫 보고 되었으며, 사하라 사막 이남지역 북아프리카 지역에서 발생, Bunyaviridae과로 전체적인 치사율은 약 1% 정도이나, 출혈열 증상인 경우 치사율은 약 50%로 보고

② 급만성

마성감염병 관련 병원체 및 질환 발생 현황

- (후천성면역결핍중(AIDS)) 세계적으로 '20년 3천7백만 명의 HIV 감염인이 생존 중 이며, 신규 감염은 1백 50만 명으로 '10년 대비 31% 감소
 - ※ 특히 아시아·태평양 지역의 신규 HIV 감염인은 24만 명(17만 명~31만 명)
 - 국내에서는 '20년 한 해 1,016명이 신규 감염자로 국내 생존 감염인 수는 14,538명 (10만 명당 28.0명)으로 추정되며 이 중 50세 이상 인구가 전체 감염인의 46.9%로 노년층의 HIV 감염인 수 증가

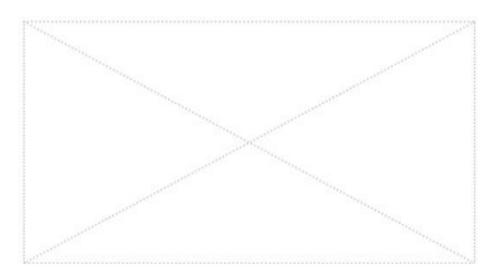


|그림 | 연도별 신규 HIV 감염인 수(1985년~2020년)

- (B형 간염) C형간염과 달리 완치가 어렵고 30대에서 60대까지의 연령대에서는 B형간염 표면항원 양성률이 높아 여전히 한국인의 만성 간질환 원인 중 60-70%를 차지
 - -B형간염 유병률이 높은 국가로부터 외국인 유입이 증가하면서 국내 B형간염 유병률이 상승할 가능성이 있어 이에 대한 대비 필요
- (C형간염) 국내 C형 간염은 2017년 6,396명, '18년 10,811명, '19년 9,810명, '20년 11,849명, '21년 10,115명이 신고되어 증가와 감소 반복되는 추세
 - ※ 연령별로는 50대 이상에서 83.2% (9,857명) 전년대비 14.6% 감소
 - '21년 전 세계 인구 중 5.800만 명이 만성적으로 C형간염 바이러스에 감염되고

있으며, 연간 150만 명 가령의 신규 감염이 발생하며, 연간 약 29만 명이 C형 간염 관련 간질환과 간암으로 사망

- ※ 국내에서는 B형간염 바이러스에 이어 만성 바이러스 간염을 일으키는 두 번째 흔한 원인
- -국내 C형간염 역학은 40세 이상으로 연령이 증가하면서 유병률이 점진적으로 증가하며, 어린이와 청소년 대상의 C형 간염 연구는 아직 부족한 실정
- ※ '15년 국내 다기관 검진 자료에 따르면, 20대의 HCV 항체 양성률은 0.24%였지만, 연령이 증가할수록 HCV 항체양성률이 증가하여 70세이상은 1.64%로 가장 높음


|그림 | 국내 연령별/성별 C형간염 항체 보유율('15년)

- (사람유두종바이러스감염증) 2021년 신고 규모는 11.342명 발생
 - -HPV의 감염은 상피내종양 및 자궁경부암을 유발하고, 자궁경부암은 전세계적으로 여성암의 15%. 우리나라의 경우 21.1% 로 높은 유병율
 - ※ 전 세계적으로 자궁경부암을 일으키는 HPV의 감염률은 11.4%에 이르며, HPV 감염은 대부분 별다른 치료 없이 치유되지만, 약 10% 정도에서는 지속감염의 형태로 존재

헤르페스바이러스감염증(수두, 대상포진)

-(수두) '05년 1,934명에서 점차 증가하여 '14-'16년 연간 약 4만-5만명, '17-'19년 연간 약 8만-9만명('18년 96,467명으로 감시 이후 발생 최다 발생) 까지 증가하였으나, '20년 3월부터 급감하여 '20년 31,430명, '21년 20,929명 ('20년 대비 33.4% 감소)까지 감소 추세

- ※ '21년환자의 82.8%가 12세 이하로, 주로 미취학아동 및 초등학교 저학년 연령대에서 발생
- (대상포진) '10년 대비 '19년의 대상포진 환자수는 1.5배, 치료비용은 2.2배 증가하였으며, 대상포진 환자 중 59.9%는 50세 이상

※ 치료비용 = 요양급여비용 총액 + 보험자 부담금

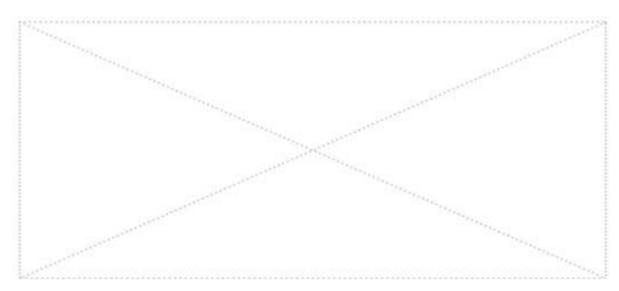
|그림|2010년~2019년 국내 연도별 대상포진 발병 및 치료비용 발생현황

🔲 급성갂염병 관련 병원체 및 질화 발생 현황

- (홍역) '00년 하반기부터 '01년 상반기까지 대규모 유행으로 약 5만 6천여 명의 환자가 발생하였으나, '01년 5월부터 홍역 일제 예방접종사업 실시 이후 크게 감소
 - ※ '14년 WHO로부터 국가 홍역퇴치 인증을 받은 이후 매년(2015-2018년) 20명 이하의 해외 유입 및 해외유입 관련 환자가 발생
 - '19년에는 전 세계적 홍역 유행으로 총 194명(해외유입 86명, 해외유입관련 104명, 불명 4명) 발생하였으나, '20년 6명(1-2월) 해외유입 환자 발생 이후 '20년 3월 부터 '21년 12월까지 환자 보고 없음
- (유행성이하선염) '98년 4,461명에서 '02년 764명으로 감소하였으나, 이후 지속 증가하여 '14-'15년 약 25,000명 내외까지 증가한 이후 '16-'19년 15,000-20,000여명으로 감소, '20-'21년 1만명 미만으로 감소
 - '21년 발생 환자는 59.708명으로 '20년 9.922명 대비 2.2% 감소
 - ※ '21년 환자의 77.7%가 12세 이하로, 미취학아동 및 초등학교 저학년 연령대에서 주로 발생

- (아데노바이러스 감염증) '21년에는 219개의 표본감시기관(입원환자 기준)에서 1,092명 발생
- (사람 보카바이러스 감염증) 급성호흡기 감염증의 약 1.5-19%가 사람 보카바이러스로 보고되며, '21년 국내 1.053건의 신고 발생
- (호흡기세포융합바이러스감염증(RSV)) '19년 국내 호흡기세포융합바이러스 (RSV) 감염증 신고사례는 연령별로 1~6세가 60.9%, 1세 미만이 33.9%이며 전체 신고 건수의 94.7%가 6세 이하의 영유아로 분포
 - -美 RSV에 감염된 신생아가 매년 85,000명에서 144,000명으로 폐렴 환자의 20~25%, 세기관지염 환자의 740%가 입원하며, 세계적 질병 부담은 매년 6천 4백만 건, 사망은 16만 건으로 추산
 - RSV 감염증은 국내에서 매년 10월부터 다음해 3월까지 주로 발생하며, 잠복기는 짧으나 감염된 사람과의 접촉 혹은 호흡기 비말을 통해 쉽게 전파되며 주로 영유 아에게 주로 발생
- (리노바이러스 감염증) '21년에는 219개의 표본감시기관(입원환자 기준)에서 6.929명 발생
- (사람 메타뉴모바이러스 감염증) '21년에는 219개의 표본감시기관(입원환자 기준)에서 34명 발생
- (파라인플루엔자바이러스 감염증) '21년에는 219개의 표본감시기관(입원환자 기준)에서 4.415명 발생
- **(풍진)** '01년 MR(Measles[홍역]+Rubella[풍진]) 일제예방접종 후 급격히 감소 하기 시작하여 '18년에는 0명 발생
- (**로타바이러스 감염증**) 주로 바이러스에 오염된 물을 통해 감염되며, '21년 국내 1,053건의 발생 보고
- (장내아데노바이러스 감염증) '22년 국내 아데노바이러스 감염증 환자는 103명 이며, 환자의 84.5%가 0~6세 영유아로 대부분을 차지하며 꾸준히 증가
- (노로바이러스 감염증) '22년 노로바이러스 감염증 환자는 142명이며, 환자의 76.7%가 0~6세 영유아 로 대부분을 차지하며 꾸준히 증가

• (사포바이러스 감염증) 장내 검출 바이러스 중 '17년부터 '21년까지 5년간 1% 미만 검출률을 유지


● 급성간염(A형, C형)

- -(A형간염) '12년 이후 2,000명 이하로 환자가 발생하였으나 '16~'17년 4,500명 내외로 일시적으로 증가하였고, '19년에는 조개젓으로 인한 대규모 유행으로 신고 환자 수가 17,579명으로 급증한 후 '20년 3,989명, '21년은 6.583명으로 전년 대비 65% 증가
- ※ '21년 감염자는 연령별로는 20-40대에서 5,144명(78.1%)으로 많았으며, 지역별로는 경기, 서울, 인천, 충남 지역에서 다발, 사망자는 2명으로 신고되었고, 해외 유입사례는 없었음
- -(C형 간염) 전년대비 14.6% 감소하였고('20년11,849명 → '21년 10,115명), 연령별로는 50대 이상이 전체 환자의 83.9%(8,490명)를 차지함
- (엔테로바이러스 감염증) '17년부터는 표본감시기관 지정기준이 확대(상급종합병원 및 200병상 이상 병원급 의료기관과 공공병원)되어 '21년에는 211개 표본감시기관에서 총 55명(기관당 신고 수 0.3명)이 신고
 - 세분류별로는 무균성수막염 18명, 수족구병 12명, 심근염 12명, 포진성구협염 8명, 신생아패혈증 2명, 뇌염 2명, 심낭염 1명 순으로 신고
 - ※ 병원체감시대상 지정전염병에서('09년 6월 보건복지부 고시) '09년 12월 「감염병의 예방 및 관리에 관한 법률」전면개정('10.12.30. 시행)에 따라 지정감염병으로 재분류
- (폴리오) 1983년 5명 발생을 마지막으로 신고된 바 없으며, 국가예방접종사업이 안정적으로 운영되어 95% 이상의 예방접종률 유지를 통하여 집단면역을 구축, '00년 WHO로부터 폴리오 박멸 인증을 받음
 - -급성이완성마비(AFP) 감시체계에서 환자를 대상으로 분변 검체내 폴리오 바이러스 존재여부를 확인하여 폴리오 바이러스의 국내 유입을 감시
- (공수병) 광견병 바이러스에 의해 대부분 사망하는 치명적인 바이러스성 감염병으로 '05년 이후 현재까지 발생보고 없음
 - ※ 발생시 치명적이나 치료를 통해 예방적 치료 가능

③ 결핵

🔲 결핵 발생 및 대응 현황

- 결핵은 결핵균(Mycobacterium tuberculosis)을 원인으로 하는 공기매개 감염병으로 '19년 전 세계 사망원인 13번째이자, 우리나라 전체 사망원인에서 14위로, 법정 감염병에서는 가장 높은 순위를 기록하나, 점차 낮아지고 있는 추세
 - 전 세계적으로 '20년에는 약 987만 명의 결핵 환자가 발생했으며, 약 149만 명이 결핵으로 인해 사망했다고 보고
 - -우리나라는 '20년 경제협력개발기구(Organization for Economic Cooperation and Development, OECD) 38개 회원국 중 결핵 발생률이 1위로 가장 많고, 결핵 사망률은 3위로 높은 수준
 - '20년 국내 결핵 사망자수는 1,356명(10만 명당 2.6명)으로 '10년 2,365명 (10만 명당 4.7명) 대비 무려 42.7%, '19년 1,610명(10만 명당 3.1명) 대비 15.8% 감소
 - -65세 이상 노인 결핵 사망자도 '20년 1,119명(10만 명당 13.8명)으로 '19년 1.335명 (10만 명당 17.3명) 대비 16.2% 감소
 - 반면, 결핵 사망자수는 코로나19 사망자 수의 1.5배로 높고, 사망자 중 65세 이상이 차지하는 비율이 '16년 이후 80% 이상을 차지
 - 결핵 신환자수는 '01년 이후 증감을 반복하다가 '11년 39,557명(10만 명당 78.9명)으로 최고치를 기록한 이후 연평균 7.3% 감소하여 '19년 23,821명 (10만 명당 46.4명), '20년 19,933명(10만 명당 38.8명)으로 전년 대비 16.3% 감소
 - -'20년은 체계적인 결핵감시체계 운영 이래 최초로 결핵 환자수가 1만 명대로 진입하였고, '21년 결핵 신환자 수는 18,335명(10만 명당 35.7명)으로, '20년 (19,933명, 10만 명당 38.8명) 대비 8.0%(1,598명) 감소
 - ※ 특성별로는 65세 이상 결핵 신환자 수가 9,406명으로 전년(9,782명) 대비 역시 3.8% 감소 했으나, 전체 신규 환자의 51.3%를 차지

※ 치료비용 = 요양급여비용 총액 + 보험자 부담금

|그림 | 2001년~2021년 국내 연도별 결핵 환자 수

- ☞ 향후 결핵 퇴치를 위해서는 결핵 유형과 환자 특성(65세 이상 결핵 신환자 절반 이상, 사회경제적 취약계층 3.5배)을 고려한 결핵환자 조기발견 사업, 적정 의료 서비스 제공, 맞춤형 환자관리 사업 등 결핵 예방관리 정책 강화 필요
 - 하지만, 세계보건기구(World Health Organization, WHO)는 코로나19가 결핵 관리에 미친 부정적 영향으로 인해 '20년과 '21년 전 세계적으로 137,000명이 결핵으로 초과 사망할 것으로 예측
 - ※ '00년 이후 결핵 사망자는 꾸준히 감소세를 보였지만 코로나19 팬데믹으로 인해 상황이 역전되어 '20년에는 10년만에 결핵 사망자가 증가
 - 하지만, '20년 결핵 진단, 치료 및 예방에 대한 전 세계 지출 목표였던 '22년까지 연간 130억 달러의 절반에도 못 미치는 투자가 이루어짐에 따라 연구 개발을 위해서는 연간 미화 11억 달러가 추가로 필요하다고 제시
 - * On World TB day WHO calls for increased investments into TB services and research.
 - -'18~'20년까지 3년간 전 세계에서 약 2000만 명이 결핵 치료를 받은 것으로 파악되었으며, 이는 '18~'22년 즉 5년간 결핵 치료 달성 목표인 4,000만 명중 50%에 해당하는 수치
 - 같은 기간 동안 870만 명이 결핵 예방 처치를 받았는데 이 또한 '18~'22년의 목표치 3,000만명의 29%에 해당하는 결과이며, 더욱이 결핵에 걸린 어린이와 청소년의 경우 상황이 더욱 좋지 않은 실정

- ※ '20년에는 결핵에 걸린 15세 미만 아동 및 청소년의 약 63%가 결핵 진단 및 치료 서비스를 받지 못했거나 공식적으로 보고되지 않은 것으로 나타났으며, 그 비율은 5세 미만 어린이의 경우 72%로 훨씬 더 높은 것으로 조사
- ☞ 코로나19 연구에서 배운 교훈을 바탕으로 새로운 도구, 특히 새로운 결핵 백신의 개발을 가속화하기 위한 투자와 행동을 촉진할 필요
- ※ 결핵 프로그램 투자는 결핵 환자 뿐 아니라 의료 시스템 및 전염병 대비에도 이점이 있음이 입증
- ☞ 금번 WHO에서 발표한 어린이 및 청소년의 결핵 관리 지침에는 진단, 치료 및 예방에 대한 새로운 권장 사항이 제시

	결핵발생률 감소
진단	✔ 대변과 같은 비 침습적 표본을 진단 검사에 포함
	✔ 소아 및 청소년의 결핵 진단을 위한 초기 검사로 신속한 분자 진단법이 권장
치료	 ✓ 심각하지 않은 약제내성결핵 아동 및 청소년은 이제 6개월이 아닌 4개월 치료가 권장되며, 결핵 뇌수막염은 기존의 12개월 대신 6개월 요법이 권장 - 이것은 환자 중심 접근을 촉진하여 아동, 청소년 및 그 가족을 위한 결핵 치료 비용을 줄이는데 도움을 줄 것
	✔ 약제내성결핵을 치료하는 최신 결핵약물 2종(bedaquiline, delamanid)이 모든 연령대의 어린이에게 권장되며 약제내성결핵이 있는 어린이는 연령에 관계없이 전 경구 치료 (all-oral treatment) 요법을 받을 수 있음
제어/ 관리	✓ 더 많은 어린이와 청소년이 거주지와 가까운 곳에서 결핵 치료 및 예방 프로그램을 이용할 수 있도록 하는 통합적인 결핵 관리 모델

④ 항생제 내성

- (반코마이신내성황색포도알균(VRSA) 감염증) 반코마이신에 내성이 있는 황색 포도알균에 의해 발생하며, 균혈증, 피부 및 연조직 감염, 수술부위 감염 등을 동반
 - '20년 1월 1일 감염병예방법에 따라 제2급감염병으로 변경되어, 표본감시 체계에서 전수감시 체계로 전환(제4급감염병→제2급감염병)
 - '18년까지 국내 발생사례가 보고된 바 없으나, '19년 국내 첫 발생사례가 보고 되어 총 3건 발생했으며, '20년 9건 발생
- (카바페넴내성장내세균속균종(CRE)감염증) 카바페넴계 항생제에 내성을 나타내는 장내세균속균종에 의해 발생하며, 요로감염, 위장관염, 폐렴 및 폐혈증을 동반
 - '17년 전수감시 체계로 전환되었으며, 국내 발생 신고 사례는 지속 증가
 - 전수감시 체계 전환 이후 전수감시 인식 향상, 보건의료 이용 증가, 감시 강화 등에 따라 신고 사례가 매년 증가
 - '19년 총 15,369건의 발생 사례가 보고된 이후, '20년 18,113건으로 전년대비 17.9% 증가

│표│ 항생제 내성균 감염증 발생 현황(전수감시)

(단위 : 명)

질환명	2015	2016	2017	2018	2019	2020
반코마이신내성 황색포도알균(VRSA)감염증	-	-	_	_	3	9
카바페넴내성 장내세균속균종(CRE)감염증	-	-	5,717	11,954	15,369	18,113
합계	_	_	5,717	11,954	15,372	18,122

자료: 2020 감염병 감시연보, 질병관리청, 2021

- (반코마이신내성장알균(VRE)감염증) 반코마이신을 포함한 Glycopeptide 항생제에 내성을 보이는 장알균에 의한 감염증으로, '18년 15,787건 발생
 - 병원에 입원중인 환자로부터 침습적인 시술이나 수술 등을 통해 감염이 유발되며, 감염 시 요로감염, 창상감염, 균혈증 등 감염 종류에 따라 증상이 다양함
 - '16년 12,002건, '17년 13,251건, '18년 15,787건이 발생하며, 증가추세를 보임

- (메티실린내성황색포도알균(MRSA)감염증) 메티실린 및 그 밖의 베타락탐계 항생제에 내성을 나타내는 황색포도알균에 인한 감염증으로, 항생제 감수성 시험에 근거하여 감수성 있는 항생제로 치료하며, '18년 35.164건 발생
 - 항암제 치료를 받는 환자, 수술을 받은 환자, 면역저하 환자 등에서 침습적인 시술 이나 수술 등을 통해 감염이 유발될 수 있으며, 감염부위에 따라 증상이 다양함
 - '16년 38,615건, '17년 37,206건, '18년 35,164건 발생
- (다제내성녹농균(MRPA)감염증) 카바페넴계, 아미노글리코사이드계, 플로로퀴 놀론계 항생제에 모두 내성을 나타내는 녹농균에 의한 감염증으로, 건강인의 5%에서 장관 내에 존재하고, 입원환자의 30% 정도에 존재하며, '18년 6,320건 발생
 - 항암제 치료를 받는 환자, 수술을 받은 환자, 면역저하 환자 등에서 침습적인 시술이나 수술 등을 통해 감염되며, 피부감염, 욕창, 폐렴, 균혈증, 패혈증, 수 막염 등을 유발
 - '16년 6,703건, '17년 6,253건, '18년 6,320건으로 지속 증가 중
- (다제내성아시네토박터바우마니균(MRAB)감염증) 카바페넴계, 아미노글리코사이 드계, 플로로퀴놀론계 항생제에 모두 내성을 나타내는 아시네토박터바우마니균의 감염증으로, 건강인의 경우에는 감염위험이 적으나, 만성폐질환자나 당뇨 환자는 감염에 취약하며, '18년 22,789건 발생
 - 인공호흡기구 사용환자, 장기간 입원환자에서 감염이 일어나며, 폐렴, 혈류감염,창상감염 등을 유발하며 감수성 있는 항생제로 치료 가능
 - '16년 24,781건, '17년 21,907건, '18년 22,789건 발생

│표│ 항생제 내성균 감염증 발생 현황(표본감시 분리율)

질환명		2013	2014	2015	2016	2017	2018
반코마이신내성	건	7,948	8,917	10,566	12,002	13,251	15,787
장알균감염증(VRE)	분리율	0.35	0.39	0.46	0.50	0.57	0.68
메티실린내성황색포도알균	건	40,364	39,797	39,954	38,615	37,206	35,164
감염증(MRSA)	분리율	1.78	1.74	1.75	1.62	1.61	1.50
다제내성녹농균감염증	건	5,625	5,267	6,048	6,703	6,253	6,320
(MRPA)	분리율	0.25	0.23	0.27	0.28	0.27	0.27
다제내성아시네토박터	건	21,506	23,972	25,860	24,781	21,907	22,789
바우마니균감염증(MRAB)	분리율	0.95	1.05	1.14	1.04	0.95	0.98

자료 : 질병관리청(2021)

주1) 분리율: 의료관련감염병 환자 재원 일수 1,000일 당 발생 건수 = 의료관련감염병 신고 건수/환자재원 일수 * 1,000

5 인수공통

- <국내> 기후변화 관련 바이러스 병원체별 질환 발생 현황
- ① 출혈열 바이러스
 - (중증열성혈소판감소증후군) SFTS는 진드기 매개 바이러스로 '09년 중국에서 최초 보고 이후 '12년 한국, 일본에 전파되어, 국내 감염자 수는 연평균 30% 이상 증가
 - '13년 국내 첫 환자가 보고되어 '21년까지 총 1,504명의 환자가 발생하였으며, 그중 277명이 사망하여 약 18.4%의 높은 치명률 발생
 - ※ '21년에는 172명이 발생하여 전년대비 29.2%(71명) 감소

| 표 | 최근 5년 국내 SFTS 환자 및 사망자 발생 현황('16~'21)

구분	2017	2018	2019	2020	2021
환자수(명)	272	259	223	243	172
발생률(10만명 당)	0.53	0.50	0.43	0.47	0.33
사망자수(명)	54	46	41	37	26
치명률(%)	11.5	19.8	18.4	15.2	15.1

자료 : 중증열성혈소판감소증후군(SFTS) 사망자 발생에 따른 예방수칙(질병관리청 보도자료) 2022.05.16

- (뎅기열) '00년 8월 법정감염병으로 지정된 후 매년 100명 내외로 신고 중, '21년에는 코로나19로 해외여행객이 급감하여 총 3명으로 전년대비 93%(40명) 감소
 - 주요 유입국가는 필리핀, 베트남, 인도, 인도네시아 등의 동남아시아 국가로, '19년 7월 싱가포르는 전년 대비 332%(5.575명) 가장 큰 사망 증가율 발생
- (황열) 2001년 이래 국내 신고 수 없음

- (신증후군출혈열) '98년 이후 점차 증가하여, '15년까지 300~400명 사이에서 증가와 감소를 반복하다가 '16년에 575명을 정점으로 감소
 - '16년 이후 지속적으로 감소추세였으나, '21년에는 전년대비 14.8%(40명) 증가

│표│출혈열 바이러스 전수감시 환자 신고 현황('17~'21)

(단위: 인구 10만명당 발생률)

구분	2017	2018	2019	2020	2021
중증열성혈소판 감소증후군(SFTS)	272	259	223	243	172
뎅기열	171	159	273	43	3
황열	0	0	0	0	0
신증후군출혈열 (유행성출혈열)	531	433	399	270	310

자료 : 2021 감염병 감시연보, 질병관리청, 2022

② 모기매개 바이러스

- (웨스트나일열) 우리나라는 현재 웨스트나일열 발생국이 아니며, 국내 매개 모기를 통한 발생사례 및 국내 신고 수는 '12년 1건 외에 없음
- (일본뇌염) 대부분 아시아에서 발생하는 아시아 특수 질병으로 '20년 인도 환자 비율이 51.4%(718명)으로 가장 많은 수의 환자 발생
 - 인도에 이어 중국(18.6%), 베트남(13.8%), 미얀마(5.4%) 순
 - 대부분 무증상으로 감염되어 증상이 나타나는 경우 약 30% 사망하고, 생존 자의 30~50%에서 신경계 합병증이 발생
 - -국내 전수감시 현황에 따르면 최근 5년간('17~'21) 연간 7~34명의 환자 발생

|표|일본뇌염 환자 발생 상위 20개 국가 및 발생 현황('16~'20)

(단위 : 명, %)

국가명	지역	2016	2017	2018	2019	2020	비중	합계
인도	아시아	1,627	2,043	1,707	2,496	718	51.4%	8,591
중국	아시아	1,130	1,147	1,800	369	260	18.6%	4,706
방글라데시	아시아	1,294	19	96	86	32	2.3%	1,527
베트남	아시아	357	200	313	196	193	13.8%	1,259
미얀마	아시아	393	442	126	115	75	5.4%	1,151
말레이시아	아시아	59	20	28	48	31	2.2%	186
일본	아시아	11	3	0	9	_	0.0%	23
대한민국	아시아	_	9	_	_	_	0.0%	9

자료: The Global Health Observatory, WHO

- (지카바이러스감염증) 국내에서는 '16년 3월 브라질 여행 후 입국자에게서 발생, '16년 총 16건 보고되었으며 '21년은 발생 보고가 없고 누적 발생자 34명 수준
- (치쿤쿠니야열) '10년 법정감염병 지정, '11년 감시를 시작한 이래 누적 발생자 40명 수준, 코로나19 이후 여행객 급감으로 '20년 해외유입 사례 1명으로 급감 하였고 '21년은 발생 보고가 없음

③ 진드기매개 및 신경계 바이러스

- (진드기매개뇌염) 러시아, 체코, 에스토니아, 독일 등 유럽, 중국 일부, 일본 북부에 걸쳐 분포 중이나 국내 환자는 아직 보고된 바 없음
- (공수병) 1999년부터 '04년까지 총 6명의 환자가 발생하였으며 적정 치료 시기를 놓쳐 전원 사망, '05년 이후 국내 발생 보고 없음

│표│모기매개/진드기매개/신경계 바이러스 전수감시 환자 신고 현황('17~'21)

(단위: 인구 10만명당 발생률)

구분	2017	2018	2019	2020	2021
웨스트나일열	0	0	0	0	0
일본뇌염	9	17	34	7	23
지카바이러스 감염증	11	3	3	1	0
치쿤구니야열	5	3	16	1	0
진드기매개뇌염	_	_	_	0	0
공수병	0	0	0	0	0

자료: 질병관리청, 2021 감염병 감시연보, 2022

[해외] 기후변화 관련 바이러스 병원체별 질환 발생 현황

- (중증열성혈소판감소증후군) 중국에서는 매년 5~8월에 집중적으로 발생, '09년 중국에서 최초 발생 이후 중국내에서는 표본감시 중임에도 불구하고, '11~'18년 까지 매년 약 400~1,845건 범위에서 발생 보고
- (뎅기열) 유럽에서 여름~초가을 사이에 주로 발생, '22년 프랑스 남부에서 36명의 환자가 발생하면서 ECDC에서 남프랑스 여행 후 귀국 관광객들의 전파를 우려 하여 증상 발생 시 진료 권고
- (황열) '22년 1분기, 케냐에서 총 15명의 환자가 발생하여 3명 사망,사망률 20%
- (신증후군출혈열) 한탄바이러스와 서울바이러스 감염에 의한 급성발열성 질환으로. '21년 11월말 기준 대만에서 총 9명의 화자 발생
- (웨스트나일열) '22년 8월초 기준, 유럽 지역에서 총 188명*의 환자가 발생하여 10명의 사망 보고
 - * (인간) 이탈리아 144명, 그리스 39명, 오스트리아 2명, 루마니아 2명, 슬로바키아 1명 → 유럽 연합과 국경을 맞댄 세르비아에서도 환자 34명 발생 및 3명 사망
 - * (동물) 말 이탈리아 7건, 조류 이탈리아 38건 & 독일 1건
- (일본뇌염) '22년 3월 중순 기준, 호주 4개 주에서 20명의 환자 보고, 이전 10년간 일본뇌염 인체감염 사례는 15명이 전부였던 상황이 전환되면서 호주 정부에서는 일본 뇌염을 국가중요감염병(CDINS)로 선언

- (지카바이러스감염증) '21년 10월부터 인도 우타르프라데시주에서 발생한 감염 사례가 당해연도 인도 전체 감염 사례 수의 2/3를 차지하면서, CDC에서 해당 지역 여행 자제 권고
- (치쿤쿠니야열) '20년 10월, 수단 다르푸르 지역에서 100년만의 기록적 수위 의 홍수 발생 이후 확진자 41명이 발생하면서, 주 정부에서 위기 상황 선포
- (진드기매개뇌염) '20년 6~8월에 걸쳐, 유럽 덴마크에서 3명, 우크라이나에서 1명이 발생하는 등 유럽 및 아시아 지역에서 매년 수천 건 보고
- (공수병) '21년 8월 미국 일리노이주에서 박쥐에 의한 공수병 감염으로 1명 사망 보고, 미국 내에서는 연간 1~3건의 발생이 보고되며 대부분(70%)이 박 쥐에 의한 물림으로 감염되는 상황

[국내] 인수공통 관련 세균 병원체별 질환 발생 현황

① 인수공통 감염세균

- (브루셀라증) '00년 법정감염병 지정, '02년 국내 첫 환자 신고 후 '06년 215 명을 정점으로 감소하여 '21년에는 4명 발생(1명 해외 유입)
- (**렙토스피라증**) 1987년 562명 대규모 유행, 1998년 이후 '06년까지 매년 100명 내외였으나 '07년 208명을 정점으로 점차 감소, '21년에는 144명의 환자 보고

② 리케치아/오리엔시아

● (쪼쯔가무시증) 1998년 이후 환자 발생 증가, '16년 11,105명으로 정점에 달하고 '17년 이후 감소추세, '21년에는 전년 대비 32.1% (1,436명) 증가한 5,914명의 발생이 보고

│ 표 │ 인수공통세균/리케치아 전수감시 화자 신고 현황('17~'21)

(단위: 인구 10만명당 발생률)

구분	2017	2018	2019	2020	2021
브루셀라증	6	5	1	8	4
렙토스피라증	103	118	138	114	144
쯔쯔가무시증	10,528	6,668	4,005	4,479	5,915

자료 : 질병관리청, 2021 감염병 감시연보, 2022

③ 매개체 전파 세균

- (큐열) '06년 법정감염병 신규 지정 이후 매년 10명 내외로 신고되었으나, '15년 부터 점차 증가하여 '18년 최고 163명까지 증가 후 감소세, '21년은 46명으로 전년대비 33.3%(23명) 감소
- (라임병) '11년 해외 체류 중 감염된 외국인 2명 신고 이후, 매년 10명 내외로 발생하다가 '16년 이후 20명 이상으로 증가, '21년에는 8명 발생
- (유비저) 주로 베트남 등 동남아시아에서 유입되며, '09년 법정감염병 지정 이후 매년 10명 미만 신고사례는 모두 해외유입으로 국내 발생은 없으며, '21년에는 2명 발생
- (말라리아) 대표적인 재출현 감염병으로 1970년대 후반 이후 해외유입 사례만 신고되다가 1993년부터 다시 국내 환자가 발생, '00년에 4,142명으로 정점을 기록한 이후 전반적으로 감소세
 - '21년 전년대비 28.6% 감소(385명)한 294명이 발생, 이 중 20명은 해외유입

④ 프리온 감염

- (크로이츠펠트-야콥병 및 변종크로이츠펠트-야콥병) '11년 기존 표본감시에서 전수감시로 관리체계 전환, 매년 30~60건 내외의 증감 반복
 - -'21년 전년대비 4.7%(3명) 증가한 67명 감염, 자연적 돌연별이 발생에 의한 산발성(sporadic) CJD가 60명, 유전적 소인에 의한 유전형(genetic) CJD 7명

│표│매개체전파세균/프리온 감염 전수감시 환자 신고 현황('17~'21)

(단위 : 인구 10만명당 발생률)

구분	2017	2018	2019	2020	2021
큐열	96	163	162	69	46
라임병	31	23	23	18	8
유비저	2	2	8	1	2
말라리아	515	576	559	385	294
크로이츠펠트-야콥병(CJD) 및 변종크로이츠펠트-야콥병(vCJ D)	38	54	53	64	67

자료 : 질병관리청, 2021 감염병 감시연보, 2022

⑤ 수인성·식품매개 감염

- (장출혈성대장균감염증) '00년 법정감염병 지정 이후 매년 환자 발생 증가세, '20년 경기도 안산시 집단발생으로 270명이 발생하고 '21년에는 165명 발생
- (비브리오패혈증) 오염된 어패류 섭취로 감염되며, '21년 52명이 발생하여 전년 70명 대비 25.7%가 감소했으나, 치명률이 42.3% ('21년 사망 22명)에 달함

│ 표 │ 장출혈성대장균감염증/비브리오패혈증 전수감시 환자 신고 현황('17~'21)

(단위: 인구 10만명당 발생률)

구분	2017	2018	2019	2020	2021
장출혈성대장균 감염증	138	121	146	270	165
비브리오패혈증	46	47	42	70	52

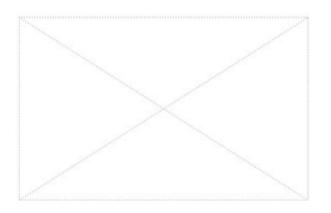
자료 : 질병관리청, 2021 감염병 감시연보, 2022

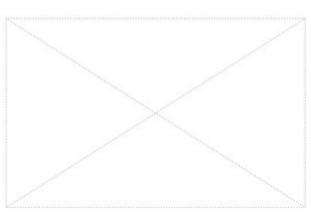
- (세균성 장관감염증) 현재 법정감염병 분류상 장관감염증*은 살모델라감염증 등 11종을 세균성 장관감염증으로 분류하고 있으며, 표본감시를 통해 발생 현황을 추적 중
 - * 살모넬라군감염증, 장염비브리오군감염증, 장독소대장군감염증, 장침습성대장군감염증, 장병원성 대장군감염증, 캄필로박터군감염증, 클로스트리듐 퍼프린젠스 감염증, 황색포도알군감염증, 바실루스 세러우스군 감염증, 예르시니아 엔테로콜리티카 감염증, 리스테리아 모노사이토 제네스 감염증
 - '21년 분과 검토대상 9종 중 3종(캄필로박터, 바실루스 세레우스, 리스테리아 모노사이토제네스)을 제외하고 모든 장관감염증 환자 수 전년 대비 증가
 - 캄필로박터균 감염증은 '21년 전년대비 67명(1.95%) 감소했으나, 세균성 장 관감염증 중 가장 많은 3,368명 환자 발생

│표│장세균성 장관감염증 표본감시 환자 신고 현황('17~'21)

(단위 : 신고수)

구분 (표본감시기관수)	2017 (196)	2018 (195)	2019 (204)	2020 (207)	2021 (208)
살모넬라감염증	2,282	2,399	2,664	1,939	2,990
캄필로박터균 감염증	1,472	2,686	3,421	3,435	3,368
장염비브리오균 감염증	111	139	128	55	61
장독소성대장균 (ETEC) 감염증	27	25	83	55	82
장침습성대장균 (EIEC) 감염증	4	21	20	4	10
장병원성대장균 (EPEC) 감염증	117	127	148	110	360
바실루스 세레우스균 감염증	9	5	54	12	7
예르시니아 엔테로코리타카 감염증	66	99	125	108	148
리스테리아 모노사이토제네스 감염증	24	3	11	8	7
9종 발생 합계	4,112	5,504	6,654	5,726	7,033


* 자료 : 질병관리청, 2021 감염병 감시연보, 2022


[해외] 인수공통 관련 세균 병원체별 질환 발생 현황

- (브루셀라증) '18년 중국에서 37,943건, EU 지역에서 358건 발생 보고
 - -'19년 중국 간쑤성 란저우시 수의연구소 내 연구진 317명이 발생, 진단 결과 확진자가 96명으로 나타나 해당 실험실을 폐쇄하고 역학조사 실시
- (**렙토스피라증**) '22년 1~8월까지 필리핀에서 렙토스피라증 환자 1,467명 발생, 그 중 205명이 사망하여 사망률 14% 기록
- (쪼쯔가무시증) 동남아시아, 인도네시아, 중국, 일본, 인도 및 호주 북부 농촌 지역에서 주로 발생하며, 아시아-태평양지역 쯔쯔가무시 삼각지 외부에서도 신종이 나타나는 것으로 확인

< 쯔쯔가무시 삼각지 내외 오리엔시아 종 분포 >

< 2019년 미국 라임병 보고 현황 >

│그림│쯔쯔가무시 삼각지 내외 분포 및 美 라임병 보고 현황

- (큐열) '22년 1분기 동안 크로아티아 지역에서 9명의 환자 발생, 2-3주 잠복기 및 전파력을 고려할 때 최소 20명의 환자 발생 예상
- (라임병) '19년 미국 동북부(펜실베니아, 뉴욕, 뉴저지 등)를 중심으로 23,453명 확진자 발생
- (유비저) '21년 미국에서 아로마테라피 룸스프레이(인도제조)에 의한 환자 4명이 확인되면서 해당 제품군 약 3.900병 회수 조치
 - ※ 유비저(Melioidosis)는 미국에서 매년 약 12건의 사례가 보고
- (**말라리아**) '19년 아프리카 브룬디에서 10개월간 환자 723만명이 발생하고 2.681명 사망. 인도에서도 9개월간 환자 928명 발생 및 33명 사망

- (CJD, vCJD) 전 세계적으로 연간 인구 100만명 당 대략 1~1.5명 비율로 발생하며 최대 2명까지도 발생, 1979년부터 '20년까지 미국의 평균 연간비율은 50세이상 인구 100만명 당 3.6건
 - -'20년 미국의 CJD에 의한 사망자 수는 대략 538명으로 추정되며, 연령조정 사망률은 1.235%
 - 약 85%가 산발성(sporadic) 질환으로 발생, 프리온 단백질 유전자의 유전적 돌연변이를 지닌 5~15%가 유전형(genetic) 질환으로 발생
 - ※ 유전형에는 Gerstmann-Straussler-Scheinker 증후군과 치명적인 가족성 불면증이 포함
- (장출혈성대장균감염증) '22년 7~8월 미국 4개 주에서 37명의 환자가 E.coli 0157:H7에 감염된 것으로 확인, CDC에서는 패스트푸드 체인점에서 유통된 로 메인 상추를 원인으로 파악하고 조사 중
- (비브리오패혈증) '22년 9월말 미국 플로리다 지역 허리케인 통과 후 오염된 바닷물에 노출되면서 10월초부터 비브리오 패혈증 발생 증가
 - ※ '22년 9월말~10월초(10월2주차)까지 29명 감염, 4명 사망
- (살모넬라감염증) '21년 6월~9월까지 미국 37개 주에서 총 652명이 살모넬라 오라니엔버그(Salmonella Oranienburg)에 감염, CDC에서 유행 원인을 멕시코산 수입 생양파 섭취로 파악하여 FDA에서 판매 금지 조치 및 교차오염 주의 안내
- (바실루스 세레우스균 감염증) '06년 캐나다에서는 해당 병원체로 인한 질병 사례가 36,000건 이상 발생한 것으로 추정

2. 팀 단위 주요 항목 분석

2.1. 기초연구본부

가. 첨단바이오의학연구팀

🔲 인력 현황

- '18년과 비교하여 '22년 전체 인력의 변화는 없으며, 박사 인력은 1명 감소, 석사 인력은 1명 증가한 것으로 나타남
 - (박사) '18년 5명에서 '19년 이후로 4명 유지
 - (석사) '18년 1명에서 '22년 2명으로 증가

|표|최근 5년간('18~'22) 첨단바이오의학연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	5	4	4	4	4
석사	1	1	2	1	2
학사이하	0	0	0	0	0
합계	6	5	6	5	6

🔲 예산 현황

- 최근 5년간 R&D 예산 33.7억 원(25개 과제)을 확보하였으며, '22년 7.0억 원 (4개 과제) 확보
 - '19년까지 6.6억 원(6개 과제) 이후 '20년 4.6억 원(4개 과제)까지 감소하였으나, '22년 7.0억 원(4개 과제) 확보

│표│최근 5년간('18~'22) 첨단바이오의학연구팀 R&D 예산 현황

(단위: 개, 억 원)

구분		2018	2019	2020	2021	2022	합계
R&D	과제수	6	6	4	5	4	25
과제	연구비	8.0	6.6	4.6	7.4	7.0	33.7

● 최근 5년간('18~'22) 총 23건의 논문을 게재했으며, '18년부터 '22년까지 매년 4~5건의 논문성과 창출 유지 중

|표|최근 5년간('18~'22) 첨단바이오의학연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
첨단바이오의학연구팀	5	4	4	5	5	23

■ 특허 성과

● 최근 5년간('18~'22) 총 출원 9건, 등록 1건의 성과를 창출했으며, '22년에는 출원 3건과 등록 1건 성과 확보

│표│최근 5년간('18~'22) 첨단바이오의학연구팀 특허 성과 현황

(단위: 건)

구분	2018	2019	2020	2021	2022	합계	
권리되지 이어컨서 그리	출원	1	2	1	2	3	9
첨단바이오의학연구팀	등록	0	0	0	0	1	1

■ 기술지원 성과

- 최근 5년간 기술지원료 2.38억 원(기술 지원 14건)을 확보
 - -(기술지원) '18년 1건으로 가장 적으며, '19년 가장 많은 5건 지원 후 감소 하여, '21년 이후부터 2건 유지 중
 - -(기술지원료) '18년 기술지원료 0.12억 원으로 가장 적으며, '19년 기술지원료 0.93억 원으로 가장 많으며, '22년 0.35억 원으로 감소

│표│최근 5년간('18~'22) 첨단바이오의학연구팀 기술지원 성과 현황

(단위: 건, 억 원)

구분	2018	2019	2020	2021	2022	합계	
권리에서 이런서 그리	기술지원	1	5	4	2	2	14
첨단바이오의학연구팀	기술지원료	0.12	0.93	0.39	0.59	0.35	2.38

■ 보유 파이프라인

- 간암 및 간섬유화 관련 기술이전 3건 완료
 - GRP78(간암 타겟 화합물 억제제)의 유효성 평가 완료 후 '19년 J2H Biotech에 기술이전(19.2억원) 완료
 - CBL-8300(간섬유화 치료후보물질) 독성평가 완료 후 '22년 키바이오에 기술 이전(15억 원) 완료
 - SORD (간암예후예측바이오마커) 특허 등록 후 '22년 메디키나바이오에 기술 이전 완료

|표|첨단바이오의학연구팀 파이프라인 현황

				R&D	Phase			т •
	병원체	기초	Hit	Lead	LeadOpt -imizati on	in vivo efficacy	in vivo toxicity	Lisence Out
1	간암(Arginase inhibitor)	complete	complete	on going		complete		-
2	간암(GRP78 inhibitor)	complete	complete	on going		complete		o (2019)
3	간암(SORD inhibitor)	complete	complete			complete		_
4	간암(ASS1 regulator)	complete	complete	on going		on going		_
5	간암(GG2)	complete	complete			complete		_
6	간섬유화(CBL-8300)	complete	complete	on going		complete	complete	o (2022)
7	간섬유화(MEKP)	complete	complete	complete	on going	complete		_
8	간섬유화(CHKP)	complete	complete	on going		complete		_
9	간암 예후진단(SORD)	complete	complete			complete		o (2022)

나. 항생제내성 연구팀

■ 인력 현황

- 최근 5년간 꾸준히 증가하였으며, '18년 4명에서 '22년 8명으로 증가
 - (박사) '20년까지 2명을 유지, '21년 이후 4명으로 증가
 - (석사) '20년 4명에서 '21년 3명으로 감소 이후 '22년 다시 4명 유지

|표|최근 5년간('18~'22) 항생제내성연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	2	2	2	4	4
석사	2	3	4	3	4
학사이하	0	0	0	0	0
합계	4	5	6	7	8

■ 예산 현황

- 최근 5년간 R&D 예산 수주 29.2억 원(16개 과제) 확보
 - '18년 2억 원(2개 과제)으로 가장 낮은 가운데 '20년 6.8억 원(3개 과제)으로 증가했으며, '22년 10.6억 원(4개 과제)까지 증가

|표 | 최근 5년간('18~'22) 항생제내성연구팀 R&D 예산 현황

(단위: 개, 억 원)

구	분	2018	2019	2020	2021	2022	합계
R&D	과제수	2	3	3	4	4	16
과제	연구비	2.0	4.2	6.8	5.7	10.6	29.2

■ 논문 성과

• 최근 5년간('18~'22) 총 12건의 논문을 게재했으며, '18년과 '19년 각 1건에서 '20년, '21년 각 4건 논문성과를 창출하고, '22년 2건 성과 확보 중

│표│최근 5년간('18~'22) 항생제내성연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
항생제내성연구팀	1	1	4	4	2	12

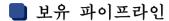
■ 특허 성과

● 최근 5년간('18~'22) 총 출원 5건, 등록 1건의 성과를 창출했으며, '22년 등록 1건 특허성과 확보

│표│최근 5년간('18~'22) 항생제내성연구팀 특허 성과 현황

(단위: 건)

구분		2018	2019	2020	2021	2022	합계
중 기계계 시서 그리	출원	0	1	2	2	0	5
항생제내성연구팀	등록	0	0	0	0	1	1


■ 기술지원 성과

- 최근 5년간 기술지원료 3.34억 원(기술 지원 17건)을 확보
 - -(기술지원) '19년 기술지원 2건으로 가장 낮으며, '20년 5건으로 가장 높은 이후, '21년 이후 기술지원 3건으로 유지
 - -(기술지원료) '18년 0.4억 원 이후 2년간 증가하여 '20년 1.09억 원으로 가장 많았다가 감소하여 '22년 0.35억 원으로 가장 적음

|표|최근 5년간('18~'22) 항생제내성연구팀 기술지원 성과 현황

(단위: 건, 억 원)

구분	2018	2019	2020	2021	2022	합계	
된 계계계 되자 그리	기술지원	4	2	5	3	3	17
항생제내성연구팀	기술지원료	0.4	0.8	1.09	0.71	0.35	3.34

● 기술이전

- MRSA 화합물에 대한 후보물질 도출을 완료 후 '19년 J2H Biotech에 기술이전 (19.2억 원) 완료
- 다제내성 그람양성균(그 중 MRSA) 유효성평가 완료 후 '21년 J2H Biotech에 기술이전(20억 원) 완료

|표|항생제내성연구팀 파이프라인 현황

		R&D P	hase					т.
	병원체		Hit	Lead	LeadOpt -imizati on	in vivo efficacy	in vivo toxicity	Lisence Out
1	메티실린내성황색포도상구균	complete	complete	complete	on hold	on hold	on hold	0
2	다제내성 그람양성균	complete	complete	complete	complete	complete	on hold	0
3	메티실린내성황색포도상구균	complete	complete	complete	on going	on going		_
4	반코마이신내성 장구균	complete	complete	complete	on going	on going		_
5	그람음성균 유출펌프	complete	complete	on going				_
6	그람음성균	complete	on going					_

다. 응용분자바이러스연구팀

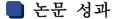
■ 인력 현황

- '18년과 5명으로 가장 많았으며, 점차 감소하여 '22년 3명까지 감소
 - (박사) '20년까지 2명을 유지하다가 '21명 이후 1명으로 감소
 - (석사) '18년 3명에서 '19년 이후부터 2명으로 유지

|표|최근 5년간('18~'22) 응용분자바이러스연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	2	2	2	1	1
석사	3	2	2	2	2
학사이하	0	0	0	0	0
합계	5	4	4	3	3


■ 예산 현황

- 최근 5년간 R&D 과제 예산 11.7억원(12개 과제) 확보
 - -'18년 3.2억 원(2개 과제)로 가장 높았으며, '19년 2.2억원 이후 증가하다가 '22년 0.8억 원(2개 과제) 확보

|표 | 최근 5년간('18~'22) 응용분자바이러스연구팀 R&D 예산 현황

(단위: 개, 억 원)

구	분	2018	2019	2020	2021	2022	합계
R&D	과제수	2	3	2	3	2	12
과제	연구비	3.2	2.2	2.5	3.1	0.8	11.7

• 최근 5년간('18~'22) 총 29건의 논문을 게재했으며, '20년 10건성과를 확보하는 등 기초연구본부에서 두 번째로 많은 논문성과 창출 유지 중이며, '22년 4건 성과 확보

|표|최근 5년간('18~'22) 응용분자바이러스연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
응용분자바이러스연구팀	3	6	10	6	4	29

■ 특허 성과

● 최근 5년간('18~'22) 총 등록 6건의 성과를 창출했으며, 5년간 출원 성과는 없으며, '19년 3건, '20년 1건 '21년 2건 등록 성과 확보

│표│최근 5년간('18~'22) 응용분자바이러스연구팀 특허 성과 현황

(단위: 건)

구분		2018	2019	2020	2021	2022	합계
O Q 별 키미시크 & 서그티	출원	0	0	0	0	0	0
응용분자바이러스연구팀	등록	0	3	1	2	0	6

■ 기술지원 성과

- 최근 5년간 기술지원료 3.29억 원(기술 지원 12건)을 확보
 - -(기술지원) '19년~'20년 기술지원 4건 이후, 증가하여 '21년 기술지원 6건으로 가장 많으며, '22년 기술지원 2건으로 감소
 - (기술지원료) '19년 기술지원료 0.55억 원 이후 2년간 증가하여, '21년 1.72억 원으로 가장 높았다가, '22년 0.68억 원으로 일부 감소

│표│최근 5년간('18~'22) 응용분자바이러스연구팀 기술지원 성과 현황

(단위: 건, 억 원)

구분	2018	2019	2020	2021	2022	합계	
0 0 H zlulal zluk 7 El	기술지원	0	3	1	6	2	12
응용분자바이러스연구팀	기술지원료	0	0.14	0.31	1.72	0.68	3.29

■ 보유 파이프라인

● 기술이전

- C형 간염 치료 물질인 Tu(C형 간염 바이러스 억제제)를 발견, 생체 독성화실험 완료 후, '16 J2H Biotech에 기술 이전(30.5억 원)을 실시
- ※ 신약개발사업단, '새로운 작용기전의 C형간염 치료제 후보물질 개발'과제 수행으로 선도물질 최적화 후 최종 후보물질 도출

│표│응용분자바이러스연구팀 파이프라인 현황

				R&D	Phase			Т:
	병원체		Hit	Lead	LeadOpt -imizati on	in vivo efficacy	in vivo toxicity	Lisence Out
1	HBV(KM)	complete	complete	on going				_
2	DENV	complete	on going					_
3	HBV	complete	on going					_
4	HEV	complete	complete	stopped				_
5	Ebola	complete	complete	stopped				-
6	HCV(TU)	complete	complete	complete	complete	complete	complete	Ο
7	HIV							
8	ZIKV	complete	complete	stopped				_

■ 인력 현황

- '18년과 비교하여 '22년 전체 인력이 증가하였으며, 박사 인력은 1명, 석사 인력은 1명 감소한 것으로 나타남
 - (박사) '18년 4명이던 박사 인력은 '21년 이후로 5명 유지
 - -(석사) '18년 0명이던 석사 인력은 '19년 이후로 2명 유지

|표 | 최근 5년간('18~'22) 숙주·기생충연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	4	4	4	5	5
석사	0	1	2	2	2
학사이하	0	0	0	0	0
합계	4	5	6	7	7

■ 예산 현황

- 최근 5년간 R&D 예산 17.3억 원(18개 과제)을 확보
 - '20년 5.3억 원(4개 과제)로 가장 높은 가운데, '22년 3.0억 원(4개 과제) 확보

|표 | 최근 5년간('18~'22) 숙주·기생충연구팀 R&D 예산 현황

(단위: 개, 억 원)

ن	구분	2018	2019	2020	2021	2022	합계
R&D	과제수	4	3	4	3	4	18
과제	연구비	4.6	2.1	5.3	2.3	3.0	17.3

■ 논문 성과

• 최근 5년간('18~'22) 총 11건의 논문을 게재했으며 '18년을 제외하고 '20년과 '22년 각 4건의 논문성과 확보

│표│최근 5년간('18~'22) 숙주-기생충연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
숙주-기생충연구팀	0	1	4	2	4	11

■ 특허 성과

● 최근 5년간('18~'22) 그간 특허 성과가 없는 상태

│표│최근 5년간('18~'22) 숙주-기생충연구팀 특허 성과 현황

(단위: 건)

구분		2018	2019	2020	2021	2022	합계
스즈 기계초서그리	출원	0	0	0	0	0	0
숙주-기생충연구팀	등록	0	0	0	0	0	0

■ 기술지원 성과

- 최근 5년간 기술지원료 20.21억 원(기술 지원 85건)을 확보
 - -(기술지원) '18년 기술지원 17건에서, '19년 12건으로 감소했다가 '20년 18건으로 증가, '21년 9건으로 가장 적은 가운데 '22년 29건으로 가장 높음
 - (기술지원료) '18년 5.71억 원으로 가장 많으며 '21년 2.81억 원으로 가장 적은 가운데 '22년 5.18억 원으로 증가

|표 | 최근 5년간('18~'22) 숙주·기생충연구팀 기술지원 성과 현황

(단위: 건, 억 원)

구분		2018	2019	2020	2021	2022	합계
ᄼᅎᅯᆌᅕᆏᄀ티	기술지원	17	12	18	9	29	85
숙주·기생충연구팀	기술지원료	5.71	3.48	3.04	2.81	5.18	20.21

■ 보유 파이프라인

│표│숙주·기생충연구팀 파이프라인 현황

				R&D	Phase			Lisence
	병원체		Hit	Lead	LeadOpt -imizati on	in vivo efficacy	in vivo toxicity	Out
1	Leishmaniasis(IPP)	complete	complete	complete	complete	complete	paused	I
2	Leishmaniasis(drug repurposing)	complete	complete	complete	complete	on going		_
3	Chagas disease(DOQ)	complete	complete	on going				-
4	Malaria	complete	on going					-
5	Pyroptosis(drug repurposing)	complete	complete					_

마. 결핵연구팀

■ 인력 현황

- '18년과 비교하여 '22년 전체 인력은 1명 감소되었으며, 학력별 인력 중 석사 인력이 1명 감소한 것으로 나타남
 - -(박사) '18년 2명이던 박사 인력은 '20년 3명으로 가장 많았으며, '22년 2명 으로 유지
 - (석사) '18년 2명이던 석사 인력은 '20년 이후로 1명 유지

|표|최근 5년간('18~'22) 결핵연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	2	2	3	3	2
석사	2	2	1	1	1
학사이하	0	0	0	0	0
합계	4	4	4	4	3

■ 예산 현황

- 최근 5년간 과기부 블록 없이 R&D예산 7.1억 원(5개 과제)을 확보
 - 과기부 블록 예산 없이. 외부 과제를 수주하고 있는 상황
 - 과기부 블록 외, '20년 2.0억 원(1개 과제)로 가장 높은 가운데, '22년 예산은 없는 상태

|표 | 최근 5년간('18~'22) 결핵연구팀 R&D 예산 현황

(단위: 개, 억 원)

구분		2018	2019	2020	2021	2022	합계
R&D 과제	과제수	⇒ 1 2		1	1	0	5
	연구비	1.5	1.6	2.0	2.0	0	7.1

■ 논문 성과

● 최근 5년간('18~'22) 총 8건의 논문을 게재했으며, '18년 4건 이후 해마다 1~2건의 논문성과 유지 중

|표|최근 5년간('18~'22) 결핵연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
결핵연구팀	4	1	0	1	2	8

■ 특허 성과

 최근 5년간('18~'22) 총 출원 3건, 등록 12건의 성과를 창출했으며, 매년 등록 성과를 확보 중으로 '22년 2건 등록 성과 확보

|표|최근 5년간('18~'22) 결핵연구팀 특허 성과 현황

(단위: 건)

구분	2018	2019	2020	2021	2022	합계	
겨체서그티	출원	1	1	0	1	0	3
결핵연구팀	등록	3	2	2	3	2	12

■ 기술지원 성과

- 최근 5년간 기술지원료 1.15억 원(기술 지원 3건)을 확보
 - (기술지원) '18년, '19년 및 '21년 기술지원 1건
 - -(기술지원료) '18년 기술지원료 0.18억 원 이후 '19년 0.8억 원으로 가장 많으며, '21년 0.17억 원으로 감소

│표│최근 5년간('18~'22) 결핵연구팀 기술지원 성과 현황


(단위: 건, 억 원)

구분	2018	2019	2020	2021	2022	합계	
결핵연구팀	기술지원	1	1	0	1	0	3
	기술지원료	0.18	0.80	0	0.17	0	1.15

■ 보유 파이프라인

|표|결핵연구팀 파이프라인 현황

병원체		R&D Phase						Lisence
		기초	Hit	Lead	LeadOpt -imizati on	in vivo efficacy	in vivo toxicity	Out
1	TB(APPN)	complete	complete	complete	complete	complete		О
2	TB(IPA)	complete	complete	complete	complete	complete		0
3	TB(TCCA)	complete	complete	complete				_

■ 인력 현황

- '20년 2명이었던 인력이 '22년 5명으로 증가하였으며, 박사 인력은 3명, 석사 인력은 2명으로 나타남
 - (박사) '20년 1명에서 '21명 3명으로 증가 후 지속 유지
 - (석사) '20년 1명 이후 '22년 2명으로 증가

|표|최근 5년간('18~'22) 바이러스면역연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사			1	3	3
석사			1	1	2
학사이하			0	0	0
합계			2	4	5

^{※ &#}x27;20년도 신설팀

■ 예산 현황

- 최근 5년간 R&D 예산 13.8억 원(8개 과제) 확보
 - '20년 2억 원(1개 과제)을 시작으로 '21년 4.3억 원(3개 과제)으로 증가했으며, '22년 7.5억 원(4개 과제)까지 증가

|표|최근 5년간('18~'22) 바이러스면역연구팀 R&D 예산 현황

구	분	2018	2019	2020	2021	2022	합계
R&D	과제수			1	3	4	8
과제	연구비			2.0	4.3	7.5	13.8

^{※ &#}x27;20년도 신설팀

● 최근 5년간('18~'22) 총 6건의 논문을 게재했으며, '20년 1건, '21년 3건, '22년 2건 논문성과 확보

|표|최근 5년간('18~'22) 바이러스면역연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
바이러스면역연구팀			1	3	5	9

^{※ &#}x27;20년도 신설팀

■ 특허 성과

● 최근 5년간('18~'22) 그간 특허 성과가 없는 상태

│표│최근 5년간('18~'22) 바이러스면역연구팀 특허 성과 현황

(단위: 건)

구분		2018	2019	2020	2021	2022	합계
바이러스면역연구팀	출원			0	0	0	0
마이디스번역전투함	등록			0	0	0	0

^{※ &#}x27;20년도 신설팀

🔲 기술지원 성과

- 최근 5년간 기술지원료 1.10억 원(기술 지원 4건)을 확보
 - (기술지원) '21년~'22년 기술지원 2건
 - -(기술지원료) '21년 기술지원료 0.28억 원으로 가장 적으며, '22년 0.82억 원으로 가장 많음

|표|최근 5년간('18~'22) 바이러스면역연구팀 기술지원 성과 현황

구분		2018	2019	2020	2021	2022	합계
괴시키스러서어	기술지원			0	2	2	4
바이러스면역연구팀	기술지원료			0	0.28	0.82	1.10

^{※ &#}x27;20년도 신설팀

■ 보유 파이프라인

│표│바이러스면역연구팀 파이프라인 현황

				R&D	Phase			Lisence
	병원체	기초	Hit	Lead	LeadOpt -imizati on	in vivo efficacy	in vivo toxicity	Out
1	SARS-CoV-2	백신 비임상 유효성 평가						_
2	SARS-CoV-2	complete						_
3	SARS-CoV-2	기전연구						_
4	Influenza	기전연구						_
5	Influenza	<u> </u>						_
6	LCMV	기전연구						_

사. 인수공통바이러스연구팀

■ 인력 현황

- '18년과 비교하여 '22년 전체 인력이 유지되었으며, 박사 인력, 석사 인력 모두 유지됨
 - (박사) '18년 이후로 1명 유지
 - (석사) '18년 6명이던 석사 인력은 '19년과 '20년 2명으로 감소하였으며, '21년 이후부터 다시 6명 유지

│표│최근 5년간('18~'22) 인수공통바이러스연구팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	1	1	1	1	1
석사	6	2	2	6	6
학사이하	0	0	0	0	0
합계	7	3	3	7	7

■ 예산 현황

- 최근 5년간 R&D 예산 34.9억 원(15개 과제) 확보
 - 과기부 블록 외 '20년 10.8억 원(4개 과제)으로 가장 높은 가운데 '21년 5.8억 원 (3개 과제)으로 감소했으며, '22년 4.0억 원(1개 과제)까지 감소

|표 | 최근 5년간('18~'22) 인수공통바이러스연구팀 R&D 예산 현황

구	분	2018 2019		2020 2021		2022	합계
R&D	과제수	4	3	4	3	1	15
과제	연구비	8.8	5.6	10.8	5.8	4.0	34.9

• 최근 5년간('18~'22) 총 31건의 논문을 게재했으며, '21년 13건의 성과를 확보하는 등 기초연구본부에서 가장 많은 논문성과 창출 유지

|표|최근 5년간('18~'22) 인수공통바이러스연구팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
인수공통바이러스연구팀	2	4	3	13	9	31

■ 특허 성과

• 최근 5년간('18~'22) 총 출원 45건, 등록 9건의 성과를 창출했으며, 기초연구본부 중 가장 많은 성과를 확보하고 있는 상태로 '22년 출원 8건, 등록 3건 성과 확보

│표│최근 5년간('18~'22) 인수공통바이러스연구팀 특허 성과 현황

(단위: 건)

구분	2018	2019	2020	2021	2022	합계	
시스코트에시키크레그티	출원	10	5	16	6	8	45
인수공통바이러스연구팀	등록	0	1	3	2	3	9

📗 기술지원 성과

- 최근 5년간 기술지원료 15.24억 원(기술 지원 231건)을 확보
 - -(기술지원) '20년 기술지원 106건으로 가장 많은 가운데 2년간 감소하여, '22년 기술지원 48건으로 가장 적음
 - -(기술지원료) '20년 기술지원료 9.77억 원으로 가장 많은 가운데 2년간 감소 하여 '22년 1.26억 원으로 가장 적음

│표│최근 5년간('18~'22) 인수공통바이러스연구팀 기술지원 성과 현황

구분		2018	2019	2020	2021	2022	합계
시스코투에 시키 / 시크티	기술지원	0	0	106	77	48	231
인수공통바이러스연구팀	기술지원료	0	0	9.77	4.21	1.26	15.24

■ 보유 파이프라인

│표│인수공통바이러스연구팀 파이프라인 현황

				R&D	Phase			Lisence
	병원체		Hit	Lead	LeadOpt —imizati on	in vivo efficacy	in vivo toxicity	Out
1	SARS-CoV-2(약물재창출)	complete	complete	complete		on going		_
2	MERS-CoV/SARS-CoV-2	complete	complete	complete	on going	on going	on going	0
3	MERS-CoV(mAb)	complete	complete	complete	complete	complete		0
4	SFTSV(mAb)	complete	complete	complete	complete	complete		0
5	SFTSV(저분자 화합물)	complete	complete	complete	complete			_

2.2. 중개연구본부

가. 신약스크리닝팀

■ 인력 현황

- '18년 12명에서 '21년 14명까지 증가했다가 '22년 11명으로 감소하였으며, '22년 박사 인력 1명, 석사 인력 9명, 학사이하 인력 1명으로 나타남
 - -(박사) '18년~'21년까지 3명을 유지했으나 '22년 1명으로 감소
 - (석사) '20년까지 9명 이후 1명이 증가했으나, '22년 9명으로 유지
 - -(학사 이하) '18년 0명이던 학사 이하 인력은 '19년 이후로 1명 유지

|표|최근 5년간('18~'22) 신약스크리닝팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	3	3	3	3	1
석사	9	9	9	10	9
학사이하	0	1	1	1	1
합계	12	13	13	14	11

🔲 예산 현황

- 최근 5년간 과기부 블록 없이 7.7억 원(8개 과제)을 확보
 - '20년 0.3억 원(2개 과제)으로 가장 낮은 가운데, '22년 3.4억 원(3개 과제) 확보하며 가장 높은 연구비 확보

|표 | 최근 5년간('18~'22) 신약스크리닝팀 R&D 예산 현황

3	구분	2018	2019	2020	2021	2022	합계
R&	과제수	1	1	2	1	3	8
D과 제	연구비	0.5	0.5	0.3	3.0	3.4	7.7

• 최근 5년간('18~'22) 최근 5년간 총 29건의 논문을 게재했으며, '21년 9건 성과를 확보하는 등 중개연구본부에서 가장 많은 논문성과 창출 유지 중이며, '22년 7건 성과 확보

|표|최근 5년간('18~'22) 신약스크리닝팀 논문 성과

(단위: 건)

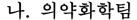
구분	2018	2019	2020	2021	2022	합계	
신약스크리닝팀	3	6	4	9	7	29	

■ 특허 성과

● 최근 5년간('18~'22) 총 등록 5건의 특허성과를 확보했으며, 등록성과만 보유 하며, '18년 2건, '19년 1건, '21년 2건 확보 중

│표│최근 5년간('18~'22) 신약스크리닝팀 특허 성과 현황

(단위: 건)


구분		2018	2019	2020	2021	2022	합계
おかたココロー	출원	0	0	0	0	0	0
신약스크리닝팀	등록	2	1	0	2	0	5

■ 기술지원 성과

- 최근 5년간 기술지원료 63.17억 원(기술 지원 160건)을 확보
 - -(기술지원) '18년 기술지원 26건 이후 2년간 증가하여, '20년 38건이며, '21년 21건으로 가장 적은 이후, '22년 45건으로 가장 높음
 - -(기술지원료) '18년 19.31억 원으로 가장 많은 이후 2년간 감소하여, '20년 7.85억 원으로 가장 적고 '22년 9.36억 원 확보

|표|최근 5년간('18~'22) 신약스크리닝팀 기술지원 성과 현황

							-, , -,
구분		2018	2019	2020	2021	2022	합계
2] A) 2 1] E]	기술지원	26	30	38	21	45	160
신약스크리닝팀	기술지원료	19.31	15.12	7.85	11.53	9.36	63.17

🔲 인력 현황

- '18년과 비교하여 '22년 전체 인력이 감소하였으며, 박사 인력은 2명 감소, 석사 인력은 1명 증가, 학사 이하 인력은 2명 감소한 것으로 나타남
 - (박사) '18년 4명이던 박사 인력은 '21년 이후로 2명 유지
 - -(석사) '18년 4명이던 석사 인력은 '22년 5명으로 증가
 - (학사 이하) '18년 2명에서 '20년 1명을 거쳐 '22년 0명으로 감소

|표|최근 5년간('18~'22) 의약화학팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	4	4	3	2	2
석사	4	3	3	4	5
학사이하	2	0	1	0	0
합계	10	7	7	6	7

■ 예산 현황

- 최근 5년간 R&D 과제 30.6억 원(16개 과제)을 확보
 - '18년 15.9억 원(3개 과제)로 가장 높은 가운데, '19년 1억 원(2개 과제)으로 크게 감소 후 '22년 6.0억 원(4개 과제) 확보

|표|최근 5년간('18~'22) 의약화학팀 R&D 예산 현황

	구분	2018	2019	2020	2021	2022	합계
R&	과제수	3	2	3	4	4	16
D 과제	연구비	15.9	1.0	2.0	5.7	6.0	30.6

• 최근 5년간('18~'22) 총 17건의 논문을 게재했으며, '21년 6건의 성과를 창출하는 등 중개연구본부에서 두 번째로 많은 논문성과 창출 유지 중이며, '22년 3건 성과 확보

|표|최근 5년간('18~'22) 의약화학팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
의약화학팀	2	2	4	6	3	17

■ 특허 성과

• 최근 5년간('18~'22) 총 출원 15건, 등록 32건의 특허성과를 확보했으며, 중개 연구본부의 대부분을 차지하고 있는 상태로 '22년 출원 6건, 등록 4건 성과 확보

|표|최근 5년간('18~'22) 의약화학팀 특허 성과 현황

(단위: 건)

							(- 1
구분		2018	2019	2020	2021	2022	합계
이아칭칭	출원	1	3	2	3	6	15
의약화학팀	등록	3	6	10	9	4	32

📗 기술지원 성과

- 최근 5년간 기술지원료 7.68억 원(기술 지원 74건)을 확보
 - -(기술지원) '20년 기술지원 12건으로 가장 적으며, '21년 기술지원 18건으로 가장 많은 이후, '22년 기술지원 14건으로 감소
 - -(기술지원료) '19년 기술지원료 0.35억 원으로 가장 적으며, '21년 2.52억 원으로 가장 많은 이후, '22년 2.02억 원으로 감소

│표│최근 5년간('18~'22) 의약화학팀 기술지원 성과 현황

구분	2018	2019	2020	2021	2022	합계	
이아취정타	기술지원	17	13	12	18	14	74
의약화학팀	기술지원료	0.86	0.35	1.94	2.52	2.02	7.68

■ 보유 파이프라인

|표|의약화학팀 파이프라인 현황

				R&D	Phase			Lisence
	병원체	기초	Hit	Lead	LeadOpt —imizati on	in vivo efficacy	in vivo toxicity	Out
1	TB(POM)	complete	complete	on going	on going	on going		_
2	TB(TTCA)	complete	complete	complete	complete	complete	on going	_
3	TB(IPA)	complete	complete	complete	complete	complete		0
4	TB(GSK)	complete	complete	complete		complete		_
5	TB(APPN)	complete	complete	complete				_
6	Inflammation	complete	complete	complete	complete			0
7	Cancer(BPA)	complete	complete	complete	complete	complete		_
8	HCV(TU)	complete	complete	complete	complete	complete	complete	0
9	HCV(IDPP)	complete	complete					_
10	HCV(DABA)	complete	complete	complete	complete			_
11	Chagas	complete	complete	on going				_
12	S. aureus	complete	complete	on going				_
13	SARS-CoV-2	complete	complete	on going				_
14	Influenza(THO)	complete	complete	complete				_
15	Fibrosis(CHKP)	complete	complete	complete				_
16	Fibrosis(MEKP)	complete	complete	complete				_
17	PROTAC	complete	complete	complete				0
18	Melanoma(BPA)	complete	complete	complete	complete	complete		_
19	Melanoma(PCA)	complete	complete	complete	complete			_
20	Melanoma(CMPD)	complete	complete	complete	complete			-

다. 기술개발플랫폼팀

■ 인력 현황

- '20년까지 3명을 유지하였으나, '21년부터 4명으로 증가하였고, 박사 인력은 2명, 석사 인력은 2명으로 나타남
 - (박사) '20년까지 1명 유지하다가 '21년 이후 2명 유지
 - (석사) '18년 이후로 2명 유지

│표│최근 5년간('18~'22) 기술개발플랫폼팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	1	1	1	2	2
석사	2	2	2	2	2
학사이하	0	0	0	0	0
합계	3	3	3	4	4

■ 예산 현황

- 최근 5년간 R&D 예산 3.8억 원(10개 과제) 확보
 - '20년 1.4억 원(3개 과제)으로 가장 높았으며, '21년 0.1억 원(2개 과제)으로 크게 감소하고 '22년 0.2억 원(2개 과제) 확보

|표 | 최근 5년간('18~'22) 기술개발플랫폼팀 R&D 예산 현황

구	분	2018	2019	2020	2021	2022	합계
R&D	과제수	2	1	3	2	2	10
과제	연구비	1.1	0.9	1.4	0.1	0.2	3.8

• 최근 5년간('18~'22) 총 9건의 논문을 게재했으며, '18년 1건이었던 성과는 '21년을 거치며 2~4건 수준 논문성과 창출

|표|최근 5년간('18~'22) 기술개발플랫폼팀 논문 성과

(단위: 건)

구분	2018	2019	2020	2021	2022	합계
기술개발플랫폼팀	1	1	1	2	4	9

■ 특허 성과

● 최근 5년간('18~'22) 그가 특허 성과가 없는 상태

│표│최근 5년간('18~'22) 기술개발플랫폼팀 특허 성과 현황

(단위: 건)

구분	2018	2019	2020	2021	2022	합계	
기스케바프레포티	출원	0	0	0	0	0	0
기술개발플랫폼팀	등록	0	0	0	0	0	0

■ 기술지원 성과

- 최근 5년간 기술지원료 2.83억 원(기술 지원 6건)을 확보
 - (기술지원) '18년~'21년 1~2건을 유지하다가 '22년 0건
 - (기술지원료) '19년 기술지원료 1.23억 원으로 가장 높으며, '22년 0억 원으로 감소

│표│최근 5년간('18~'22) 인력현황 기술지원 성과 현황

구분	2018	2019	2020	2021	2022	합계	
기스 게 나 프 레 프 티	기술지원	1	2	1	2	0	6
기술개발플랫폼팀	기술지원료	0.25	1.23	0.47	0.89	0	2.83

라. 동물실험팀

■ 인력 현황

- '18년과 비교하여 '22년 전체 인력이 감소하였으며, 박사 인력은 1명 증가, 석사 인력은 2명 감소, 학사 이하 인력은 3명 감소한 것으로 나타남
 - (박사) '18년 0명에서 '22년 1명으로 증가
 - (석사) '18년 4명에서 '19년 이후로 2명을 유지
 - (학사 이하) '18년 4명에서 22년 1명으로 감소

|표|최근 5년간('18~'22) 동물실험팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사	0	0	0	0	1
석사	4	2	2	2	2
학사이하	4	4	4	4	1
합계	8	6	6	6	4

■ 예산 현황

- 최근 5년간 2.4억 원(1개 과제)을 확보
 - '22년부터 R&D 시작으로 '18년~'21년 간의 과제 예산 없음

|표 | 최근 5년간('18~'22) 동물실험팀 R&D 예산 현황

	구분	2018	2019	2020	2021	2022	합계
R&	과제수					1	1
D과 제	연구비					2.4	2.4

^{※ &}quot;22년 이전에는 지원 역할만 수행

● '22년 R&D 시작팀으로 관련 성과 없음

■ 특허 성과

● '22년 R&D 시작팀으로 관련 성과 없음

■ 기술지원 성과

● '22년 R&D 시작팀으로 관련 성과 없음

마. 실험지원팀

■ 인력 현황

- '22년 인력은 총 3명으로, 석사 인력은 1명, 학사 이하 인력은 2명
 - -(석사) '21년까지는 없었으며, '22년 1명으로 나타남
 - -(학사 이하) '21년까지는 없었으며, '22년 2명으로 나타남

|표|최근 5년간('18~'22) 실험지원팀 인력 추이

(단위: 명)

구분	2018	2019	2020	2021	2022
박사					0
석사					1
학사이하					2
합계					3

■ 예산 현황

● '22년 설치된 조직이며, R&D조직이 아닌 관계로 관련 성과가 없음

■ 논문 성과

● '22년 설치된 조직이며, R&D조직이 아닌 관계로 관련 성과가 없음

특허 성과

● '22년 설치된 조직이며, R&D조직이 아닌 관계로 관련 성과가 없음

■ 기술지원 성과

● '22년 설치된 조직이며, R&D조직이 아닌 관계로 관련 성과가 없음