[요 약]

1. 추진 필요성

가. 중장기 방향 설정 및 전략적 투자를 위한 중장기 사업 계획 마련

- □ 차세대 생명공학 시장 선점을 위한 글로벌 경쟁력 확보 가능
 - 줄기세포 분야는 현재 태동기 단계의 기술로서, 기술 경쟁력 확보 및 선두 그룹 진입 가능
 - 우리나라 '줄기세포 응용 기술'은 최고기술 보유국 대비 80.8%, 기술 수준 및 3.5년 격차 수준으로서, 집중 투자를 통한 최고기술 확보 가능 * 출처 : 2010년 기술수준평가 보고서(2011). 국가과학기술위원회

□ 재생·맞춤의료 시대에 대응한 국가차원의 기술 주도권 확보 필요

- 줄기세포 관련 R&D 예산 증액에 따라 효율적인 투자를 위한 줄기세포분야의 사업추진 계획 마련 필요
 - * 줄기세포 관련 정부예산 : ('08) 387억원 → ('11) 601억원 → ('12) 1,004억원(추정)
- 구체적 사업 계획 마련과 연구활성화를 위해 줄기세포 기초・ 원천 기술의 연계 방안 도출 필요
- 줄기세포 중장기 사업의 투자방향 및 전략적 추진 방안, 신규사업 기획 그리고 연계방안 제시

나. 신규사업(세포재생기술개발 사업)의 전략적 추진 계획 마련

- □ 세계적인 경쟁력 우위를 점하기 위해서는 중점 연구분야의 선정과 이에 대한 국가차원의 원천기술 역량 확보가 필수
 - 세계적으로 경쟁력이 있는 줄기세포 원천연구 강화를 위해 세포 재생 및 응용 분야 기술개발 지속 확대 필요
 - 질환세포모델 연구를 통한 인체질환 발병원인, 노화 및 암발생 기전 규명
 - 역분화 줄기세포 실용화를 위한 신규 분화기술 개발 등
 - ※ 2006년 일본 yamanaka 교수 연구팀이 최초 개발한 역분화 줄기세포의 개발로 세계 줄기세포 연구의 활성화 가속화

- 국내에 축적된 줄기세포 기반 최첨단 생명공학기술을 토대로 BINT* 융합연구 지원 프로그램 도출
 - * BT, IT, NT 등 다양한 기술이 융합된 기술(Convergence Technology)
- 기술간 가교(bridge)역할을 수행할 수 있는 도전적·혁신적인 연구 과제 발굴
- 안정적 줄기세포 연구기반을 제공하기 위한 범국가적 줄기세포 연구 인프라 구축 및 서비스 제공 필요

다. 연구활성화를 위한 줄기세포 R&D 부처 연계 방안

- □ 줄기세포 R&D 투자효율화를 위한 관계부처간의 실질적인 협력 및 연계 요구
 - 실질적 산업화 성과 도출을 위한 관계기관 간 역할체계 개선 및 사업구조의 전향적 개편방안 마련 필요
 - 부처별 특성과 현장 수요를 반영하여 실질적인 사업화 성과 창출을 위한 부처간 사업 연계 체계 구축 필요

2. 중장기 사업 추진 계획

가. 기술개발 현황 분석

- □ 세포확립 및 특성분석 (As is, 확보된 기술)
 - 성체줄기세포
 - 조직특이적 줄기세포 특성분석
 - 조직특이적 줄기세포의 표면항원 및 재생능 분석
 - 배아줄기세포
 - 연구용 줄기세포주 수립 및 특성 분석
 - 역분화줄기세포
 - 유전자이용 역분화 줄기세포주 수립(세포 특성 규명 중)
 - 환자유래 줄기세포주 수립 및 신약개발 등 활용

(To be, 확보해야 할 기술)

- 성체줄기세포
- 조직특이적 줄기세포의 순수분리 및 대량확보 기술
- 내인성 줄기세포의 특성 및 조절 규명
- 배아줄기세포
- 연구용/임상용 줄기세포주 수립 및 특성 분석
- 역분화줄기세포
- 단백질이나 화합물 이용, 안전하고 효율 높은 줄기세포주 수립 및 세포 특성 규명
- 환자 유래 줄기세포주 수립 및 신약개발에 본격적 응용 및 활용 기술
- □ 분화통제, 기능조절 및 안전성

(As is, 확보된 기술)

- 성체줄기세포
- 성체줄기세포의 분화유연성 및 조직특이적 분화
- 성체줄기세포에 의한 조직 재생능 확인

- 배아줄기세포
- 적정 수율의 각종 줄기세포 분화기술개발
- 테라토마 방지 기술 개발
- 역분화줄기세포
- 배아줄기세포에서 개발한 분화 및 안전성 기술 적용

(To be, 확보해야 할 기술)

- 성체줄기세포
- 줄기세포의 기능적 조절기전 규명 및 재생기능강화기술
- 내인성 조직특이적 줄기세포의 미세환경 조절기술
- 줄기세포의 조직내 분화 및 동화 향상기술
- 배아줄기세포
- 고수율 분화기술 개발 / 초고속 분화기술 개발
- 순수 세포 분리 마커 발굴 및 테라토마 방지 기술 완성
- 역분화줄기세포
- 역분화 고유의 경향성 극복 기술개발
- 고수율 분화기술 개발 / 초고속 분화기술 개발
- 순수 세포 분리 마커 발굴 및 테라토마 방지 기술 완성

□ 양산 효율 및 범용성 확립

(As is, 확보된 기술)

- 성체줄기세포
- 조직특이적 줄기세포의 체외배양 기술
- 조직특이적 줄기세포를 이용한 다양한 임상시험
- 배아 및 역분화줄기세포
- 분화세포의 대량생산 기술

(To be, 확보해야 할 기술)

- 성체줄기세포
 - 성체줄기세포의 자가재생산 유도를 통한 대량팽창 기술
 - 줄기세포치료의 유효성 향상 및 치료효과 증진 기술
 - 배아 및 역분화줄기세포
 - 분화 후 마커 이용 순수 분리세포의 대량 생산기술 개발

□ 응용 및 치료기반(마커, DDS, 질환모델, 임상디자인, 치료기술 등) (As is, 확보된 기술)

- 성체줄기세포
 - 줄기세포를 이용한 임상시험 및 일부 시제품 출시
 - 난치병중의 상당수가 줄기세포유래 질환임을 확인
 - 줄기세포를 약물전달 수송체로 활용하는 기술확보
 - 배아줄기세포
 - 동물모델에 적용, 일부 초기 임상 시도
 - 역분화줄기세포
 - 동물모델에 적용 단계
 - * 세포제작시 유전자 사용 및 특성 규명 미완성으로 임상 미진입

(To be, 확보해야 할 기술)

- 성체줄기세포
 - 암줄기세포와 정상줄기세포의 차별적 특성분석 및 치료타켓 발굴
 - 질환군별 줄기세포 특성변화에 따른 조직재생기술
 - 임상세포치료의 유효성 평가를 위한 과학적 임상시험 기술
 - 질환 치료효과를 증진하기 위한 줄기세포 응용 제반 기술
 - 배아줄기세포
 - 임상의 유효성 및 안전성 검증
 - 안전한 세포 제작 및 특성 규명을 통한 초기 임상 진입

나, SWOT 분석

강점(Strengths)

- ·줄기세포 연구 육성을 위한 정부의 강력한 의지
- ·줄기세포 주요 기반기술 및 기술 역량 축적
- ·IT 등 첨단기술과의 **융합분야** 경쟁력 우수

약점(Weaknesses)

- ·세계수준의 핵심원천기술 확보 및 전략적 기술개발 추진 체계 미흡
- ·기초 및 임상연구의 전문인력 양성 및 기술 연계 지원 프로그램 부족
- ·줄기세포 연구에 수반되는 인프라 및 기반기술 부족

기회(Opportunities)

- ㆍ기술개발의 국제적 태동기
- · 창의 · 융합 연구분야로 **원천기술** 확보 가능
- ·미래유망 성장동력으로서 재생의료 산업기반 구축
- ·다양한 활용범위에 따른 매우 높은 미래시장 잠재력

위협(Threats)

- ·선진국의 줄기세포 연구 적극적 투자 및 규제 완화
- ·경쟁국의 일부 원천기술에 대한 지적재산권 선점
- ·줄기세포기술에 대한 글로벌 제약 회사 사업진출

구분	전략 및 대응방안
사업추진 차별화 전략 및 부처간 협력체계 강화	·이슈 대응한 탄력적 사업 추진 체제 확립 ·부처간 실질적인 성과 및 인력 체계 구축
세계 수준의 원천기술력 강화	·유망 및 중점분야에 전략적 투자 확대 ·미래 핵심원천기술 연구 지속 추진 및 강화
융합 및 응용연구·개발 촉진	·줄기세포 기반의 창의적 융복합 및 응용연구 확대 ·산업적 수요 반영한 실용화 성과 창출 강화
국가차원의 인프라 구축	·줄기세포 연구기반(시설구축 및 서비스 제공 등) 조 성 확대
줄기세포 전문인력 양성	•핵심 전문인력 양성 및 연구역량 강화 체계 마련

다, 중장기 사업 중점 육성 방향

교과부의 중기 생명공학 육성 방향

바이오산업 육성을 위한 선도적 원천기술 확보

중장기 사업 육성 방향

줄기세포를 통한 미래 재생의료의 실용화 촉진을 위한 목적 지향적 기초·원천 연구 강화 및 인프라 확충

시크레이 되시 스키이션				
연구개발 사업 육성방향	지원기반 사업 육성 방향			
○선도적 기초·원천연구 강화 및 확대	○연구개발 혁신을 주도할 전문 인력의 글로벌 역량 강화			
○글로벌 선도 연구팀 육성	○전략적 연구 활성화를 위한 기반 기술 및 인프라 확충			
○혁신적 융복합 연구 강화	○연구 성과의 신속한 상용화를 위한 연계 확대			
○ 세계 수준의 기술 경쟁력 확보 및 지원기반 구축을 통한 관계 부처 간의 협력·연계 시스템 구축				

라. 중장기 사업 비전과 목표

비전 줄기세포 유망기술개발 및 선진화 기반 확충

 목
 ① 줄기세포 활용 유망기술 개발

 ② 세계적 수준의 줄기세포 연구팀 육성(5팀 이상)

 표
 ③ 줄기세포분야에 국가적 기술주도권 확보

□ 전략적 투자 확대 및 관계부처 연계·협력 체계 강화 ○ 미래유망분야에 대한 경쟁력 조기 확보 및 원천기술 선점 을 위한 전략적 투자 확대 ○ 탄력적인(moving target) 사업추진 및 관계부처간 효율적인 연계 체계 구축 □ 선도적 원천기술 개발 및 창의적 융복합 연구개발 확충 추 ○ 미래 원천기술 확보를 위한 선도적 원천기술 개발 사업 지속적인 추진 진 ○ 산업적 수요 충족 및 창의적 융복합 연구개발 사업 확대 ○ 실용화 제고를 위한 선택적 임상연구 연계사업 확대 전 □ 기술 경쟁력 확보를 위한 선도화 연구팀 지속적 육성 ○ 세계적 경쟁력을 갖춘 기술분야별 선도연구팀 육성 사업 추진 략 ○ 미래환경 대응을 위한 우수 연구자 역량 강화 촉진 사업 추진 □ 줄기세포 전문 인력 양성 및 줄기세포 연구인프라 구축 ○ 기초원천 핵심연구 및 기초・임상연구 전문가 육성사업 추진 ○ 국가적 시설 구축 및 서비스 제공 등 연구기반 조성 사업 추진 ○ 육성 정책 연구, 생명윤리 강화 및 개선 노력 지속적 추진

마. 중점 투자 방향 및 중점 추진 분야 1) 중점 투자 방향

□ 연구개발

- 세계적 기술경쟁력이 있는 원천연구 강화
 - 배아줄기세포, 역분화(iPS 포함) 줄기세포 등
- 기 선점한 줄기세포 원천기술에 대한 지속적 지원
 - 성체줄기세포, 임상가능 줄기세포 개발 등
- 줄기세포 기초·원천연구와 임상연구 연계강화 및 첨단 융합연구 확대
 - 줄기세포 기반 신약개발, 융합연구, 조직공학 접목 기술, 임상연계 연구 등
- 고효율 줄기세포 치료기술(제) 및 줄기세포 응용기술 개발 확대
 - 세포치료제 개발기술

□ 연구기반

- 줄기세포 연구기반 조성을 위한 줄기세포 연구인프라 구축 및 서비스 제공
 - 연구용 줄기세포 은행, 신약개발 인프라 등
- 줄기세포 기초·기반연구와 연계될 응용·개발연구로 이어지는 신산업군 창출 및 산업연구 기반 확충
 - 제품화 기술, 연구시설(장비) 구축 및 소재개발 기술 등

□ 인프라

- 줄기세포부야 연구인력 확충 및 임상연계 전문가 육성
 - 기술분야별 전문인력, 첨단 융복합 인력, 기초의과학 및 임상연계 연구인력 등
- 줄기세포연구 글로벌 네트워크 강화
 - 국제공동연구, 협력프로그램 참여 등

2) 중점 추진 분야 및 우선순위

- □ 줄기세포 연구의 기술분야를 중심으로 주요 중점 추진 분야
- 연구분야는 성체줄기세포 연구에서 확보된 기술 및 연구성과 등을 분석하여 차별화된 중점추진 과제 추진

< 주요 중점 추진 분야 >

연구분야 기술분야	성체줄기세포	배아줄기세포	역분화줄기세포
기전(능) 및 제어		해 및 기능(물질) 조 세포의 질병 기전/약물	·
	미세환경 조절기술		
분리(확보) 및 배양(증식)	- 임상적용 가능한	를 통한 대량팽창 기 배양기술 및 특성분 율 분리 및 대량 증식	_ 석
분화유도	- 고효율 분화 및 - 줄기세포 재생기능	마크를 이용한 순수 등 강화 기술	분리 기술
문의ㅠㅗ 	- 순수분화 효율 증진 기술	- 다양한 줄기세포	주의 분화 기술
융합 및 응용*	- 줄기세포 기반 신 - 암줄기세포의 특	료효능증가 기술 및 상용화 기술 NT, IT, CT, 조직공학 !약개발 응용기술 이적 타겟발굴 기술 !델 질환, 약효 검색	
연구기반	- 줄기세포 연구에 - 연구용 줄기세포 - 다양한 줄기세포		개발 기술
인프라(인력, 국제협력 등)	- 줄기세포 인프라 인력양성 - 국제 협력 및 공·	(줄기세포은행 등) 동연구 추진	구축 및 관련 전문

* 융합 및 응용 : 융합 및 응용분야에 치료(제)기술 및 신약개발관련 기술 포함

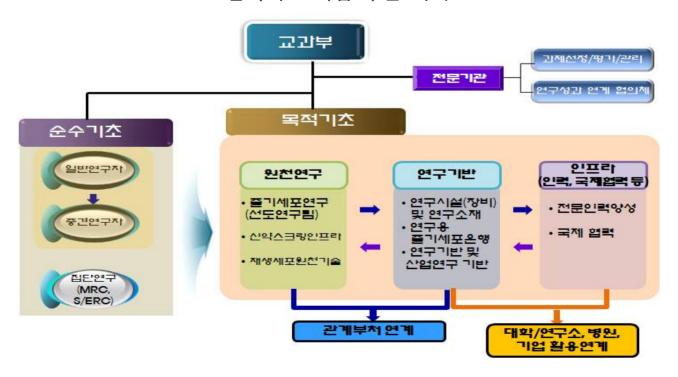
□ 투자 우선순위

세계적인 기술경쟁력을 확보하기 위해서는 원천연구, 연구기반조성 및 인력 양성을 중심으로 우선적 투자

< 주요 분야별 투자 우선순위>

¬ ы	기 스 ㅂ 시		우선순위			
구분	기술분야	고('13년 추진)	중('15년 추진)	저('17년 추진)		
	기전(능) 및 제어	기능(물질) 조절 기술	·줄기세포의 조직내			
연구	분리(확보) 및 배양(증식)	및 대량 증식기술 ㆍ성 체 줄 기 세 포 의	 임상적용 기능한 배양 기술 및 특성분석 줄 기 세 포 치 료 의 유효성 향상 및 치료 효과 증진 기술 	·실용화에 필요한 핵심기술		
개발	분화유도	· 고효율 분화 및 마케를 이용한 순수 분리 기술	·기능성 강화 분화 기술	· 다양한 줄기세포주의 분화 기술		
	융합 및 응용	・줄기세포 기반 치료 효능증가 기술 ・다양한 기술(BT, NT, IT, CT, 조직공학 등과 융합기술 ・줄기세포기반 신약 개발 응용기술 ・줄기세포 활용 모델 질환, 약효 검색 및 독성 평가 기술 ・암줄기세포와 정 상줄기세포의 차 별적 특성분석 및 치료타겟 발 굴	효과 증진 기술 ・임 상 세 포 치 료 의 유형성 - 평가를 위하	·세포치료제 개발 및 상용화 기술	치료(제)기술 및 신약개발관련 기술 포함	
	연구 기반	·다양한 줄기세포주 확립 및 기술개발	·줄기세포 연구에 수반된 장비, 소재 개발 기술			
인력	양성 및 국제 협력	·핵심 및 전문인력 양성	•국제 협력			

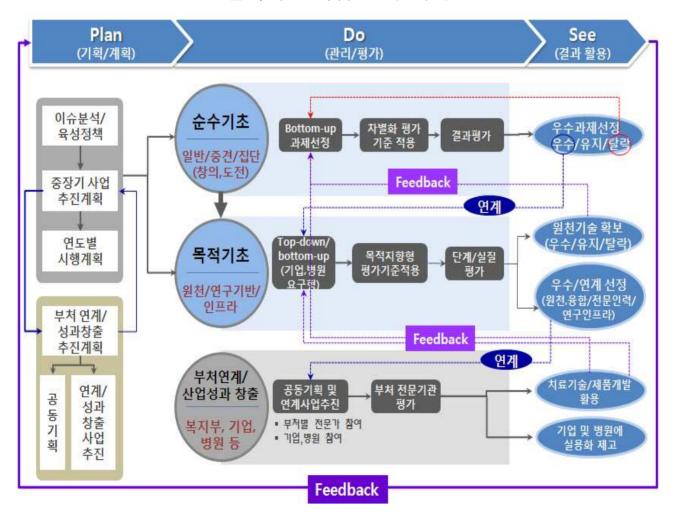
3) 사업추진으로 제시할 이니셔티브


- □ 기초·원천 연구 중심으로 타부처와 차별화
 - 교과부의 줄기세포 기술 개발은 미래보건의료 기술의 범용적 기 반이 되는 원천기술개발이 목표
 - ※ 타 부처(복지부 등)의 임상연구 등은 다양한 기초·원천 연구기반이 필수
 - 글로벌 기술 경쟁력을 고취하기 위해서 **시드(Seed)형 단기사업**과 대형 성과창출을 위한 **중·장기적 연구투자를 차별화**하여 지원
 - 글로벌 줄기세포 바이오 시장 주도를 위한 적극적 기술개발 전략 마련
 - 줄기세포 융합 신산업군을 창출할 수 있는 전략 기술 발굴 지원
 - 연구자의 실질적 과제수 감축 등 **연구에 집중할 수 있는 환경**조 성
 - * 과제당 연구비 수준을 연구목표에 맞추어 현실적으로 상향 조절 등
- □ 국가차원의 인프라 구축 및 기반기술 연구
 - 줄기세포 **기초 R&D 및 인프라**에 대한 민간차원의 투자는 거의 없으므로, 정부 지원이 매우 중요
 - 줄기세포 연구에 수반되는 **장비, 소재 개발 기술**에 투자
 - **줄기세포 신약 인프라**에 대한 통합적이고 체계적인 연구 지원 전략을 마련하여 추진
 - ⇒ 생명공학 및 신약개발 분야의 기반 기술 경쟁력 및 인적, 물적 자원이 축적되어. 단시일내 선진국과의 기술 격차 감소 가능
- □ 줄기세포 연구인력 양성 및 확보
 - **우수연구팀 집중 육성**을 통한 줄기세포 미래전략분야 핵심연구 인력 양성
 - 줄기세포분야의 전문연구인력 확보를 위한 기초연구사업 **창의적** 개인연구 및 신진연구자 지원 프로그램 확대
- □ 범부처 차원 연구개발 전략 마련
 - 범부처 차원 **연구개발 파이프라인 전반에서의 상호 연계성 강화**를 위한 전략 마련

바. 중장기 사업 추진 및 관리체계

1) 사업 추진 체계

- 전문기관에서 통합적으로 사업관리를 추진하고, "(가칭)줄기세포 연구성과 협의체"에서 관계부처로 연계 가능한 연구성과 발굴 및 연계 추진
 - 순수기초와 목적기초로 사업의 정체성을 확립하고, 순수기초의 우수성과 사업을 선별하여 목적기초로 연계 및 지속적 연구수행
 - (순수기초) 일반연구자사업의 우수과제 선별하여 중견연구자사업 으로 연계
 - (목적기초) 목적지향적인 원천연구 집중, 국내 줄기세포 연구활성화를 위한 연구기반 및 인프라 구축 추진
 - "원천연구-연구기반-인프라"로 사업구분을 통해 선정 및 평가기준, 활용 방안을 명확히 구분하고, 사업간의 상호 교류 체계 추진
 - 목적기초의 연구성과와 인력 및 시설(장비)를 관계부처 또는 연구 수행 주체(대학, 연구소, 병원, 기업)와 연계 제고


< 줄기세포 사업 추진 체계 >

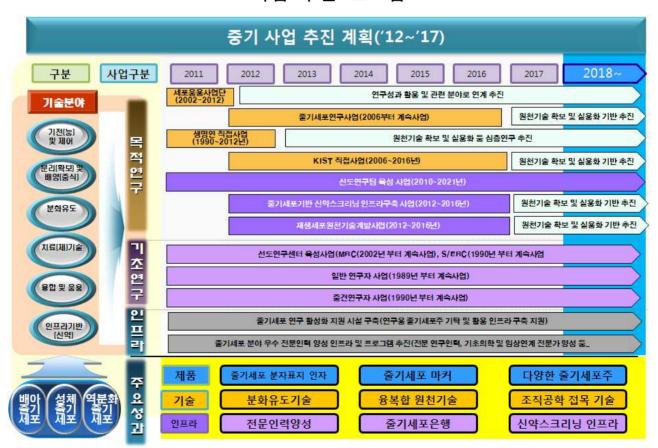
2) 사업 관리 체계

- Plan-Do-See 체계 하에서 연구개발사업과 연계사업을 구분하여 전주기적 사업관리 체계 구축
- (연구개발사업) 차별화된 평가 기준 적용으로 목적 지향적인 성과 창출 유도하고, 평가를 통한 우수/유지/탈락으로 사업관리
 - 목적기초의 연구성과는 '줄기세포 연구성과 협의체' 평가를 통해 관계 부처 연계사업과 연결
- (연계사업) 관계부처와의 공동기획 및 연계/성과창출 사업 추진 을 통해 치료기술 및 제품개발의 효율성 극대화 추진

< 줄기세포 사업 관리 체계 >

사. 중장기 투자 계획 및 사업 추진 로드맵

1) R&D투자의 전략적 확대('12년 494억원 ⇒ '17년 994억원)


- '12년 이후 연도별로 연평균 15% 증가율 적용으로 연구개발, 연구 기반, 인프라별로 전략적 예산 배분(5년간 총 투자액 : 3,833억원)
- 연도별 투자 계획에서 연구개발 60%, 연구기반 20%, 인프라 20%의 비중으로 예산 배분
 - * 12년 투자규모인 494억원과 미래유망원천기술개발 사업의 연평균 증가율 16.9%('11~'15) 반영
- 연구개발, 연구기반, 인프라에서 각 년도별로 목적기초 65%, 순 수기초 35% 비중으로 예산 배분
 - * '08~'11년 투자실적에서 목적기초 61.5%, 순수기초 38.5% 비중과 원천 기술력 확보, 융복합 등 신규사업 확대 반영

< 연도별 투자 계획 >

구분	사업구분	2013년	2014년	2015년	2016년	2017년	계
	목적기초	222	255	293	337	388	1,495
연구개발	순수기초	119	137	158	181	209	804
	소계	341	392	451	518	597	2,299
	목적기초	74	85	98	112	129	498
연구기반	순수기초	40	46	53	60	70	269
	소계	114	131	151	172	199	767
인프라	목적기초	74	85	98	112	129	498
(인력양성, 국제협력	순수기초	40	46	53	60	70	269
등)	소계	114	131	151	172	199	767
7:	1	569	654	753	862	995	3,833

2] 사업 추진 로드맵

- 사업의 정체성을 목적연구, 기초연구, 인프라로 명확히 구분·추진 하여 주요성과 창출 노력 강화
- 7개 기술분야에 대해서 사업구분별로 전략적으로 추진하여 사업의 명확한 목표 설정 및 맞춤형 관리(지원, 평가 등)를 통해 연구성과 창출 극대화 추진
- 중기사업 완료 1년 전에 평가를 통해 창출된 연구성과의 실용화를 위한 연계사업 추진
 - ※ 필요시 관계 부처간 공동사업기획 추진하여 연구성과의 실용성 제고
- 국내외 이슈 및 교과부 육성정책에 대한 탄력적 대응(Moving target)을 위한 상시적인 사업관리 지원시스템 운영

< 사업 추진 로드맵 >

☞ 실용화 기반 사업: 고효율, 전임상, 치료 및 임상기술 등

3. 세포재생기술개발사업 추진 계획

가. 사업의 특징

1) 연구사업의 정의

- 줄기세포기반의 세포재생 분야에 기초원천기술개발을 추진
- 타 부처와의 차별적인 기술적 우위를 확보하고 세계적인 원천기술력 확보를 위한 연구개발 사업

2) 연구사업의 범위

- 줄기세포주 범위
- 배아줄기세포, 성체줄기세포, 역분화 줄기세포를 포함
- 기술적 범위
- 줄기세포주의 활용 및 적용될 수 있는 세포재생분야의 기전(능) 및 제어, 분화(유도), 융합 및 응용, 줄기세포주 유지·관리 및 검증기술 등에 대한 연구개발
- 시간적 범위
- 총 5년간('12~'16), 2단계(3+2)
 - ※ 사업기간은 5년이지만 지속적으로 추진할 수 있는 사업임
- 주요 연구분야
- 줄기세포 실용화 한계 극복을 위한 세포재생 원천기술 개발(50 억원/년)
- 융합기술 접목을 통한 줄기세포 원천기술개발(40억원/년)
- 연구용 줄기세포 활용 기반 구축 및 활용 기술 확보(10억원/년)

나. SWOT 분석 및 중점 추진 방향

강점(Strengths)

- ·줄기세포 주요 기반기술 및 기술역량 축적
- ·IT 등 첨단기술과의 **융합** 분야 경쟁력 우수

약점(Weaknesses)

- ·세계수준의 핵심원천기술 확보 및 전략적 기술개발 추진 미흡
- ·줄기세포 연구에 수반되는 인프라 및 기반기술 부족

기회(Opportunities)

- ・창의・융합 연구분야로 **원천** 기술 확보 가능
- ·역분화줄기세포로 인간배아줄기 세포 대체 가능
- ·다양한 활용범위에 따른 매우 높은 미래시장 잠재력

위 협 (Threats)

- ·선진국의 줄기세포 연구 적극적 투자 및 규제 완화
- · 줄기세포기술에 대한 글로벌 제약 회사 사업진출

중점 추진 방향

세포재생 및 분화유도의 선도적 기초/원천연구 강화 및 확대

IT 등 첨단기술과의 접목을 통한 혁신적 창의적 융복합 연구 강화

줄기세포의 연구활성화 제고를 위한 연구기반 기술 개발 및 인프라 확충

다양한 줄기세포 기반

배아줄기세포

성체줄기세포

역분화 줄기세포

다. 추진 목표 및 전략

1) 비전과 목표

- □ 사업 목표
 - 세포재생 분야 원천 기술 개발을 통해 세계수준으로 경쟁력 제고 및 관련 신성장동력산업 창출 기여

2) 추진체계

- 총괄과제 형태로 연구개발을 추진하며, 상호간의 협력연구 강화 및 연구정보 공유
- 대학, 연구기관, 기업, 병원 중심으로 연구수행 및 연계 강화

다. 추진전략

- □ 단계별 추진전략
 - 1단계 ('12 -'14)
 - 줄기세포 재생 및 분화 기전 이해, 융합을 통한 상용화 기술, 기 반 구축 및 활용 기술 등에 대한 원천기술개발
 - 2단계 ('15-'16)
 - 개발된 원천기술의 고도화를 통한 원천기술력 유지 및 실용화 지 원 개발을 통한 상용화 성과 창출 추진
- □ 연구분야별 추진전략

세계 수준의 세포재생 원천기술력 제고 및 국가 신성장동력 창출

실용화 한계 극복 바이오융합 원천기술 인프라 및 활용 세포재생기술 개발 개발 • 세포재생/분화 원천기술 • 첨단기술과 전략적 • 연구용 줄기세포주의 협력 및 공동연구 강화 개발 안정화, 표준화, 검증 • 실용화 및 개발연구 산업계 수요 반영 및 등 연구기반 강화 확대 기업참여 과제 추진 • 전략적 대응을 위한 상시 지원으로 연구효율성 및 성과 실용화 제고 • 연구성과에 대한 임상연구와의 연계를 위한 병원 등 협력 및 공동연구 강화 2012 2013 2016 2014 2015 1단계 재생 및 분화 기전 이해, 상용화 기술, 기반 구축 및 활용 기술의 원천기술개발 2단계 고도화 된 원천기술력 유지 및 상용화 지원 개발을 통한 성과 창출

라. 분야별 연구개발 추진 계획

1) 실용화 한계 극복을 위한 세포재생기술 개발

가) 정의 및 범위

□ 정의

○ 줄기세포의 기능조절을 통해 획득된 새로운 세포를 활용하여 세포· 조직재생에 응용할 수 있는 핵심적 기반 기술 확립

□ 범위

- 줄기세포 기능 조절
 - 줄기세포의 배양, 줄기세포성 유지, 줄기세포의 기능(분화, 증식, 노화, 세포 사멸, 등) 증진기술 개발
- 줄기세포 분화 유도
 - 줄기세포를 특정세포로 분화 유도와 그 기전 규명 및 고효율성 조 직 특이적 분화 유도
- 새로운 다기능 줄기세포 확립
 - 조직특이적, 질환특이적 줄기세포의 확립을 위한 기술(역분화, 교차분화 등) 개발 및 세포 특성 규명
- 줄기세포 실용화
 - 줄기세포 실용화를 위한 줄기세포의 안전성, 효율성 검증

나) 연구개발 목표

□ 추진 목표

- 세포재생/분화 원천기술개발을 통한 줄기세포 국가경쟁력 확보 및 실용화 선도 기반 구축
 - 1단계 : 실용화 한계 극복하기 위한 세포 재생/분화 기반 기술 개발
 - 2단계 : 세포 재생/분화 원천기술 개발 및 실용화 촉진기술 발굴

□ 단계별 목표 및 연구내용

단계	연구목표	연구내용
"	실용화 한계 극복 하기 위한 세포 재생/분화 기반 기술 개발	○ 세포(줄기세포, 전구세포, 분화세포 등) 재생/분화 제어 해석 연구 - 자가 증식, 노화, 세포 대사 및 사멸 등 기초연구를 통한 줄기세포의 기능 조절 이해 - 체세포에서 특정세포로의 직접분화/교차분화 유도인자 발굴 및 기전 규명 - 새로운 줄기세포 조절 인자 발굴 및 기능 규명 - 조직 미세환경 조절 기전 규명 - 조직 생착능 향상 및 재생 촉진 인자 발굴ㆍ기능 연구 - 장기별 이식 세포의 cell fate 기전 규명 - 다양한 방법(배양조건, 지지체 등)을 통한 세포의 분화 ○ 세포 기반 질환 타켓, 원인, 치료법 Proof-of-principle 입증 연구 - 분화관련 인자와 단백질, 약물(chemical)등의 발굴과 기능 검증 - 특정 환자 유래 체세포를 이용한 역분화 줄기세포 확립 및 특성 규명 - 분화 인자의 세포내 전달 기술과 분화 인자 발현의 조절기술 개발 - 동물모델에서 줄기세포의 분화와 조직재생 검증 - 생체내 줄기세포 생존 추적시스템 및 이미징 기술개발 ○ 암줄기세포 기반 치료/재생 연구 - 다양한 조직세포로부터 암줄기세포 제작 및 발굴과 특성 규명 ○ 줄기세포 기술의 안정성 확보 및 효율 증진 기술(Genetic instability, Safer harbor 확인 기법, 종양형성 억제, 면역원 등) - 새로운 방법의 역분화/교차분화 유도 기술 개발 - 조직 특이적 성체줄기세포의 확보 및 특성 규명 - 재생세포 및 특정 세포의 면역원성 이해 - 효율적 세포 이식 방법 개발 및 프로토콜 확립
2단계 ('15~'16)	세포 재생/분화 원천기술 개발 및 실용화 촉 진 기술 발굴	○세포(줄기세포, 전구세포, 분화세포 등) 고효율 대량 배양/생산기술(세포 QA/QC, 표준화, 최적화, 안정적 배양 등) - 줄기세포성 유지와 기능 향상을 위한 줄기세포 대량배양 시스템 개발 - 체내이식시 조직내 생착능 향상 및 조직 재생 기능 강화 기술 개발 - 분화세포/교차분화세포의 대량 증식 기술 개발 - 역분화 줄기세포의 질환별 병리기전 규명 및 신약후보물질 발굴 ○세포(줄기세포, 전구세포, 분화세포 등) 치료/재생 기능・역가 증진 및 검증 기술 - 새로운 조절 인자를 활용한 줄기세포 분화조절의 핵심 기술 개발 - 조직 미세환경 제어 기술 개발 - 동물모델을 이용한 줄기세포의 이식 기술 개발 - 생체내 이식 줄기세포의 장단기 유효성, 안전성 및 독성 평가 기술개발 - 역분화 줄기세포를 활용한 고효율 약물 스크리닝 기술 개발

다) 연구내용에 대한 우선 순위

d7.110	비티키스	_	우선순위	4
연구내용	세부기술	상	중	하
	세포의 기능 조절 이해	٧		
	체세포에서 특정 세포로의 직접분화/교차분화 유도인자 발굴 및 기전 규명	٧		
세포(줄기세포, 전구세포,	새로운 세포 조절 인자 발굴 및 기능 규명	٧		
선구세포, 분화세포 등) 재생/분화 제어	조직 미세환경 조절 기전 규명		V	
해석 연구	조직 생착능 향상 및 재생 촉진 인자 발굴·기능 연구	٧		
	장기별 이식 세포의 cell fate 규명 연구		V	
	다양한 방법(배양조건, 지지체 등)을 통한 줄기세포의 분화	٧		
	분화관련 인자와 단백질, 약물(chemical)등의 발굴과 기능 검증	٧		
세포 기반 질환 타겟, 원인,	특정 환자유래 체세포를 이용한 역분화 줄기세포 확립 및 특성 규명	٧		
치료법 Proof-of-principle	분화 인자의 세포내 전달 기술과 분화 인자 발현의 조절기술 개발			
입증 연구	동물모델에서 줄기세포의 분화와 조직재생 검증	٧		
	생체내 줄기세포 생존 추적시스템 및 이미징 기술개발			V
암줄기세포 기반 치료/재생 연구	다양한 조직에서 발견되는 암줄기세포 발굴과 특성 규명		V	
	새로운 방법의 역분화/교차분화 유도 기술 개발	٧		
줄기세포 기술의 안정성 확보 및	조직특이적 성체줄기세포의 확보 및 특성 규명		V	
효율 증진 기술	재생세포 및 특정 세포의 면역원성 이해		V	
	효율적 세포 이식 방법 개발 및 프로토콜 확립			V
세포(줄기세포,	줄기세포성 유지와 기능 향상을 위한 줄기세포 대량배양 시스템 개발		V	
전구세포, 분화세포 등)	체내이식시 조직내 생착능 향상 및 조직 재생 기능 강화 기술 개발			V
고효율 대량	분화세포/교차분화세포의 대량 증식 기술 개발			V
배양/생산기술	역분화 줄기세포의 질환별 병리기전 규명 및 신약후보 물질 발굴		V	
	새로운 조절 인자를 활용한 줄기세포 분화조절 핵심 기술 개발		V	
세포(줄기세포, 전구세포,	조직 미세환경 제어 기술 개발			V
분화세포 등)	동물모델을 이용한 줄기세포의 이식 기술 개발		V	
치료/재생 기능・역가 증진	생체내 이식 줄기세포의 장단기 유효성, 안전성 및 독성 평가 기술개발			٧
및 검증 기술	역분화 줄기세포를 활용한 고효율 약물 스크리닝 기술 개발			V

라) 세부기술별 소요 예산(억원)

	여그내용			연 5	E별		
	연구내용		'13	'14	'15	'16	계
	세포(줄기세포, 전구세포, 분화세포 등) 재생/분화 제어 해석 연구	12	12	12	12	12	60
세포재생/	세포 기반 질환 타겟, 원인, 치료법 Proof-of-principle 입증 연구	5	5	5	5	5	25
분화기반 기술개발	암줄기세포 기반 치료/재생 연구	3	3	3	3	3	15
I 기술개월	줄기세포 기술의 안정성 확보 및 효율 증진 기술	10	10	10	10	10	50
	소계	30	30	30	30	30	150
세포재생/ 분화	세포(줄기세포, 전구세포, 분화세포 등) 고효율 대량 배양/생산기술	10	10	10	10	10	40
원천기술 및 실용화 촉진	세포(줄기세포, 전구세포, 분화세포 등) 치료/재생 기능・역가 증진 및 검증 기술	10	10	10	10	10	25
기술발굴	소계	20	20	20	20	20	100
	계	50	50	50	50	50	250

마) 추진로드맵

2) 융합기술을 접목한 줄기세포 원천기술 개발

가) 정의 및 범위

□ 정의

○ 줄기세포를 기반으로 한 BT, NT, IT, CT 등 다학제간 융합연구

□ 범위

- 줄기세포와 NT 융합
 - 다양한 나노기술을 이용한 줄기세포의 분화, 증식 조절기술개발
 - 나노기술을 이용한 줄기세포 추적기술 개발
 - 나노기술을 이용한 역분화 줄기세포 제작 효율 증진기술
- 줄기세포와 생물정보학 융합
 - 줄기세포의 기능 (분화, 증식, 노화, 사멸 등) 규명을 위한 생물 정보학의 접목
 - 역분화 혹은 교차분화 기전규명을 위한 생물정보학의 접목
- 줄기세포와 조직공학 융합
 - 줄기세포를 이용한 고효율성 조직재생 기술 개발
- 줄기세포와 유전자 치료기술 융합
 - 유전자 치료기술을 이용한 줄기세포의 유전자 변형기술 개발
 ※ 유전질환 역분화줄기세포의 유전자 변형, 면역적합성을 위한 유전자 변형 등 포함
- 줄기세포와 기타 융합기술
 - 줄기세포 상용화 촉진을 위한 다양한 BINT 융합 기술 개발
 - 줄기세포 배양, 분리, 분화, 이식, 치료 등 관련 기기 개발 등 ※ 다양한 BINT 융합기술을 토대로 한 목적지향형 연구

나) 연구개발 목표

□ 추진 목표

○ BINT 융합기술 접목을 통한 줄기세포 원천기술 확보 및 실용화 촉진 기술 개발

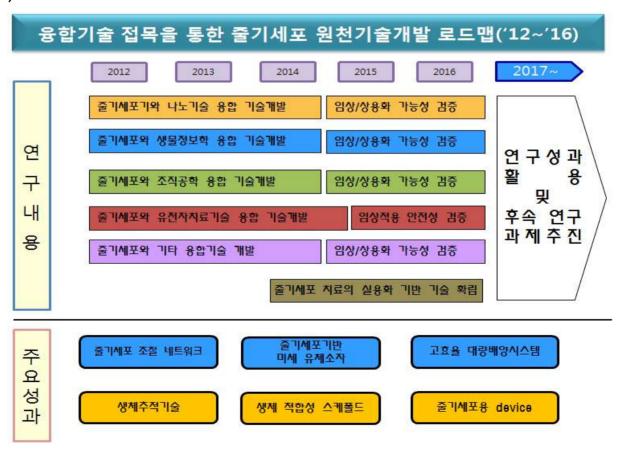
- 1단계 : BINT 융합기술을 이용한 줄기세포기반 원천기술의 확보

- 2단계 : BINT 융합기술을 이용한 줄기세포기반 원천기술의 상용화

촉진기술 발굴

□ 단계별 목표 및 연구내용

	用笆 卡亞 吳	. [2] [7] [0
단계	연구목표	연구내용
1단계 (*12~*14)	BINT 융 합 기 술 을 이용한 줄기세포기반 원천기술의 확보	 역분화 혹은 교차분화의 기전 규명을 위한 오믹스/생물정보학 기술 ○ 줄기세포와 조직공학 융합 다양한 조직공학 기술(MEMS, Hydrogel 등)을 활용한 고효율성 조직-특이세포 분화유도 원천기술 개발 ○ 줄기세포와 유전자치료기술 융합 유전자 조작 기술을 이용한 기능성 줄기세포 제작 기술 개발 ○ 줄기세포와 기타 융합기술 기타 BINT 융합기술(마이크로 플랫품 등)을 통한 줄기세포의 기능,역분화/교차분화 기전 규명 및 고효율/대량 조직 특이세포 분화유도기술개발 등
2단계 (*15~'16)	BINT 융 합기 술 을 이용한 줄기세포기반 원천기술의 전임상 /임상 및 상용화 촉진기술 개발	○ 줄기세포와 NT 융합 - 다양한 나노기술을 이용한 줄기세포의 미분화 증식 및 분화 조절기술의 상용화 적용 가능성 검증 - 다양한 나노기술을 이용한 줄기세포 추적기술의 전임상/임상 가능성 검증 - 다양한 나노기술을 이용한 안전한 역분화 줄기세포 제작 효율향상 연구 ○ 줄기세포와 생물정보학 융합 - 생물정보 기술을 활용하여 기능 (유지,분화,증식,노화,사멸 등)이 제어된 줄기세포의 임상적용 가능성 검증연구 - 역분화 혹은 교차분화의 기전 규명을 통한 역분화 혹은 교차분화의 효율 및 상용화 적용 가능성 검증 연구 ○ 줄기세포와 조직공학 융합 - 다양한 조직공학 기술(MEMS, Hydrogel 등)과 줄기세포을 이용한 고효율성 조직 특이세포의 전임상/임상 적용 및 검증 연구 ○ 줄기세포와 유전자치료기술 융합 - 유전자 조작기술을 이용하여 확보된 줄기세포의 전임상/임상를 위한 가능성 및 안전성 검증 연구 ○ 줄기세포와 기타 융합기술 - 후생유전학적 제어를 통한 줄기세포의 기능 및 역분화 조절물질 발굴 - 줄기세포 기반의 기타 BINT 융합기술(마이크로 플랫품 등)을 통한 줄기 세포의 기능, 역분화/교차분화 제어와 확보된 줄기세포의 전임상/임상을 위한 가능성 및 안전성 검증


다) 연구내용에 대한 우선 순위

어그네요	비ㅂ기스		우선순위	
연구내용	세부기술	상	중	하
	나노기술을 이용한 줄기세포 기능 (미분화 증식, 분화 등), 역분화/교차분화 줄기세포 제작기술 개발	V		
줄기세포와 NT 융합	나노기술을 이용하여 개발된 줄기세포의 상용화 적용 가능성 검증			٧
	나노기술을 이용한 줄기세포 추적기술의 개발 및 전임상/임상 적용 가능성 검증		v	
줄기세포와 생물정보학	생물정보학 기술을 활용한 줄기세포 기능(유지, 분화, 증식, 노화, 사멸, 역분화, 교차분화 등) 규명	٧		
융합	생물정보학 기술을 활용하여 제어된 줄기세포의 임상적용 가능성 검증연구			v
줄기세포와 조직공학	다양한 조직공학 기술을 활용한 줄기세포의 고 효율성 조직 특이 세포 분화유도 원천기술 개발	٧		
유합 용합	다양한 조직공학 기술을 활용하여 개발된 줄기 세포의 전임상/임상 적용 가능성 검증 연구			V
줄기세포와 유전자치료	유전자 조작 기술을 이용한 기능성 줄기세포 제작 기술 개발	٧		
기술 융합	유전자 조작 기술을 이용하여 개발된 줄기세포의 전임상/임상를 위한 안전성 검증 연구			٧
	기타 BINT 융합기술을 통한 줄기세포의 기능, 역 분화/교차분화 기전 규명	V		
줄기세포와 기타 융합기술	기타 BINT 융합기술을 통한 고효율/대량의 조직 특이세포 분화유도 원천기술개발		V	
	기타 BINT 융합기술을 통하여 개발된 줄기세포의 전임상/임상를 위한 가능성 및 안전성 검증			V

라) 세부기술별 소요 예산(억원)

연구내용			연 5	E 별		
연구네용	'12	'13	'14	'15	'16	계
줄기세포와 NT 융합	10	10	10	10	10	50
줄기세포와 생물정보학 융합	5	5	5	5	5	25
줄기세포와 조직공학 융합	10	10	10	10	10	50
줄기세포와 유전자치료기술 융합	5	5	5	5	5	25
줄기세포와 기타 융합기술	10	10	10	10	10	50
Й	40	40	40	40	40	200

마) 추진로드맵

3) 연구용 줄기세포 활용 기반 및 활용 기술 확보

가) 정의 및 범위

□ 정의

○ 다양한 연구용 줄기세포주의 안정화, 표준화, 검증, 분양시스템 구 축 및 활용

□ 범위

- 배아 및 역분화 줄기세포의 유지, 배양 및 동결보존기술을 개발 하고 이를 기반으로 한 정도관리 및 분양시스템 구축
- 배아 및 역분화 줄기세포의 유지, 배양에 관련 기술 교육시스템과 피드백 관리 체계 구축
- 국제 연구협력*및 교류를 통하여 줄기세포 국제 표준화 기술 개발
 - * 예 : ISCF (International Stem Cell Forum), International Stem Cell Registry in UMASS

나) 연구개발 목표

□ 추진 목표

- 연구용 줄기세포 활용 기반 인프라 구축 및 제공을 통한 국내외 줄기세포 R&D 촉진
- 1단계: 국제 표준에 맞춘 줄기세포주의 유지, 관리, 분야 시스템 구축
- 2단계: 세계 최고 수준의 줄기세포주의 품질 검증 시스템 개발 및 분양

□ 단계별 목표 및 연구내용

단계	연구목표	연구내용			
	연구용 줄기세포	○ 인간 배아 및 역분화 줄기세포주 배양/동결기술 개발 및 교육			
	활용 기반	○줄기세포주 분양			
(240 240)	인프라 구축	○줄기세포주 품질 검증 기술 개발			
('12~'16)	및 제공을 통한	○줄기세포주 유전적 안정성 검증 시스템 개발			
	국내외 줄기세포	○줄기세포의 품질관리를 위한 표준운영지침 확립			
	R&D 촉진	○줄기세포 분양시스템 및 교육프로그램 개발			

다) 연구내용에 대한 우선 순위

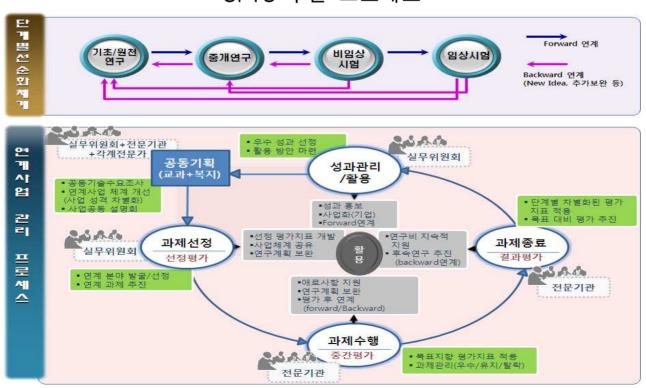
연구내용	비티기스	우선순위			
27418	세부기술	상	중	하	
인간 배아 및 역분화 줄기 세포주 배양/동결기술 개발 및 교육	다양한 인간 유래 지지세포주 개발	V			
	지지세포를 배제한 배양 방법 개발	V			
	효율적인 대량 배양 방법 개발		v		
	혈청을 배제한 동결기술 개발			v	
	hands-on workshop을 통한 배양기술 전수	٧			
줄기세포주 분양	줄기세포주 분양	V			
줄기세포주 품질 검증 기술	줄기세포 특성 분석 방법의 체계화		V		
개발	줄기세포의 안전 테스트 체계 구축			V	
조기비교조 오저저 이저서	계대 배양에 따른 유전적 안정성 비교		v		
물기세포주 유전적 안정성 검증 시스템 개발	array-CGH 등 분자유전학 방법을 이 용한 줄기세포의 유전적 안정성 검증 기술 개발			٧	
줄기세포의 품질관리를 위한 표준운영지침 확립	줄기세포 정도관리 체계 구축	V			
물기세포 분양시스템 및	줄기세포 분양 시스템 구축	V			
교육프로그램 개발	줄기세포 배양, 유지, 동결 및 해동에 관한 교육 프로그램 구축		v		

라) 세부기술별 소요 예산(억원)

연구내용		연도별					
		'13	'14	'15	'16	계	
인간 배아 및 역분화 줄기세포주 배양/동결 기술 개발 및 교육	2.5	2.5	2.5	2.5	2.5	12.5	
줄기세포주 분양		3	3	3	3	15	
줄기세포주 품질 검증 기술 개발		1	1	1	1	5	
줄기세포주 유전적 안정성 검증 시스템 개발		1.5	1.5	1.5	1.5	7.5	
줄기세포의 품질관리를 위한 표준운영지침 확립	1	1	1	1	1	5	
줄기세포 분양시스템 및 교육프로그램 개발	1	1	1	1	1	5	
계	10	10	10	10	10	50	

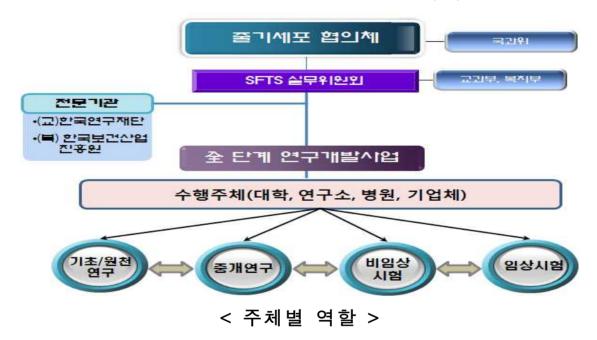
마) 추진로드맵

3. 줄기세포 R&D 부처간 연계 방안


가. 기본방향 및 SFTS 개념

- □ 연계 기본방향
 - 연구개발 全 단계(기초.원천-중개-비임상-임상)에 걸친 관계부처별 추진 사업 간의 효율적 연계 체계* 시스템으로서 'SFTS(Stem cell Fast-Track System)' 구축
 - * 부처 상호간에 이**타자리(利他自利) 개념** 하에 신속, 간소화, 선순환의 연계 사업 추진

□ SFTS(Stem cell Fast-Track System) 개념


- 단계별 선순환체계 하에서 각 단계별로 부처간 사업 연계를 추진 하는 프로세스
 - ※ forward연계: 연구성과 평가 및 선정을 통한 연계(기초원천-중개연구)
 - ※ Backward연계: 단계별 추진시 창출된 New Idea, 추가 보완 분야 등의 연계
- 실무위원회* 중심으로 각 부처 전문기관에서 차별화된 평가지표 개발 및 평가수행, 연계 가능 과제 제안 및 수용 등 추진
 - ※ 공동기획, 부처 특성 반영한 연계사업 수행, 공동성과 홍보 추진

< SFTS 추진 프로세스 >

나. SFTS 실무위원 구성 및 세부계획

- 1) SFTS 실무위원회 구성(안)
 - (목적) SFTS 구축 및 효율적인 운영을 위한 실무지원
 - (성격) 범부처 '줄기세포 협의체' 산하 실무위원회
 - (구성) 국과위, 교과부, 복지부, 연구재단, 보건산업진흥원, 생명 공학정책센터, 글로벌줄기세포/재생의료 연구개발촉진센터 담당자 등 10여명
 - * 실무지원을 위한 실무팀 별도 구성
 - (역할) 부처간 연계사업의 선정, 관리 등에 대한 총괄적 운영 및 협의 < SFTS 실무위원회 역할 및 기능(안) >

구분	역할 및 기능
줄기세포 협의체	○연계사업 관련 예산의 안정적 지원 및 확보 ○실무위원회의 원활한 운영 유지(이견 해소, 협력 사항 권고 등)
SFTS 실무 위원회	○ 연계사업 실행 주체 역할 ○ 부처간 연계사업의 선정, 추진(관리), 활용 등에 대한 총괄적 운영 및 합의
전문기관	○ 연계가능 연구성과 발굴, 차별화된 평가지표 개발, 성과관리 등 연계사업에 필요한 제반 업무 추진 ○실무위원회 운영 ※ 2년 주기로 각 전문기관에서 순차적 운영 지원

2) 세부 추진 계획

□ 부처합동 기술수요조사

- 수행주체(대학, 연구소, 병원, 기업체 등) 대상으로 全 연구개발 단계에 대한 공동 기술수요 조사 실시
 - 기술성격에 따라 기초원천(교과부), 중개/임상(복지부)로 구분

□ 사업기획 협의

- 실무위원회를 중심으로 부처별 사업 기획단계부터 협의하여 부처별 역할 분담에 근거한 명확한 사업목표 설정 및 사업기획
 - * 전문기관 사업단장 참여와 사업체계 공유를 통한 연계사업추진 체계 마련

□ 공동사업설명회 개최

- 부처별 추진 사업에 대한 공동 설명회 개최
 - 각 연구단계별로 수행주체의 지원 범위 확대 및 상호 교류의 장 마련
 - ** 예시 : 신약개발지원사업 합동설명회 개최('12.2. 교과부, 지경부, 복지부 공동)

□ 성과 연계 사업

- 국가연구개발사업으로 지원받은 줄기세포/재생의료 분야 우수 기초·원천연구의 성과를 복지부의 '중점기술 중개연구*' 프로그램 으로 연계
 - 기초·원천 선행연구 성과를 바탕으로 한 중개연구 사업 추진 등 지속적인 연구수행체계 구축으로 실용화 단계 진입 촉진 기대

교육과학기술부

기초·원천연구

(예시)

- 줄기세포 선도연구팀 육성사업
- *일반연구자 지원사업 (신진연구, 기초연구, 여성과학자 및 지역대학과학자 사업)
- *중견연구자 지원사업 (핵심연구, 도약연구)

보건복지부

중개연구

- 중점기술 중개연구
- -연간 5~10억, 3년간 지원
- -임상·기초 협동연구
- -연구개발 분야(예시)
- ·성체줄기세포 치료기능 증진기술
- ·역분화줄기세포(iPS) 임상활용기술
- ·배이줄기세포(ES) 임상활용기술
- ·조직공학 재생의료기술
- * 줄기세포/재생의료 분야 연구에 한함

