최종보고서 제출양식

겉표지 양식 : (4×6배판(가로19cm×세로26.5cm))

(뒷 면)	(½	면) (앞 면)
	、	과제번호 차세대 이차전지 협력 개방형 생태계 구축을 위한 연구 (Research for Establishing Cooperative Environment to Develop Next Generation Secondary Batteries) 연구기관 : 한국과학기술연구원 연구책임자 : 정경윤
	연 과학기술정보통신부	2024. 5. 22. 과 학 기 술 정 보 통 신 부

안 내 문

본 연구보고서에 기재된 내용들은 연구책임자의 개인적 견해이며 과학기술정보통신부의 공식견 해가 아님을 알려드립니다.

과학기술정보통신부 장관 이 종 호

제 출 문

과 학 기 술 정 보 통 신 부 장 관 귀하

본 보고서를 "차세대 이차전지 협력 개방형 생태계 구축을 위한 연구"의 최종보고서로 제출합니다.

2023. 05. 22.

연구기관명: 한국과학기술연구원

연구책임자 : 정경윤

연 구 원:정훈기

연 구 원:김형석

연 구 원:김상옥

연 구 원:류승호

연 구 원:김세영

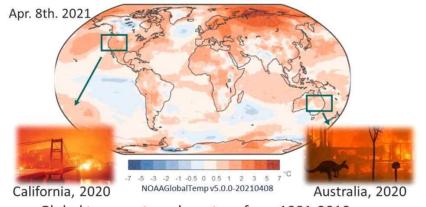
※ 연구기관 및 연구책임자, 연구원은 실제 연구에 참여한 기관 및 자의 명의임.

요 약 문

과제번호	RS-2023-		연구기간		1년 3월	_				
	(한글) 차세대 이차전지 협력 개방형 생태계 구축을 위한 연구									
과제명		(영문) Research for Establishing Cooperative Environment to Develop								
	Next Generat	Next Generation Secondary Batteries								
연구책임자 (주관연구기관	정경윤 (한국과학기술 연구원)	참 여 연구원수	총 6 명	연구비	70	0,000천원				
요약										

- 차세대 이차전지 연구 생태계 구축을 통한 미래 기술 수요 발굴
- 차세대 이차전지 분야 민간수요 기술의 발굴 및 R&D 연구역량 결집을 위한 융합 네트워크 구축방안을 제시
- 민관 공동연구, 성과활용 방안 등을 통한 지속 가능한 R&D 기반 생태계 조성 방안을 제시
- 산·학·연 연구자간 네트워킹를 통한 R&D 고도화 및 협력 개방적 기술혁신 성과 활용 방안 마련
- 산·학·연·관 정기 성과교류회 및 국내외 연구자 포럼 등을 통한 차세대 이차전지 성과 공유를 추진
- 차세대 이차전지 관련 정부 정책 과제 발굴 및 의견수렴을 위한 민관소통 활성화 방안을 마련 및 수행
- 차세대 이차전지 기술교류 및 지속적인 R&D 연계사업 구상을 위한 민관연구협의체 구성 및 운영
- 민간수요 기반 R&D 사업의 지속적인 기획·연계를 위한 민관 연구협의체 구성·운영
- 민관 연구협의체를 통한 차세대전지 유망기술 수요 및 기술선도국과의 국제협력 과제 발굴

비공개	비공개	
사유	기간	


목 차

1. 연구개요
1.1. 연구 추진 배경 및 필요성
1.2. 연구 목표10
2. 연구 추진 계획 및 내용1
2.1. 연구 추진 계획1
2.2. 연구 추진 세부 내용 및 범위1
3. 연구성과15
3.1. 민관협의체의 구성1
3.2. 민관협의체의 운영 결과
3.2.1. 분과별 위원회 구성18
3.2.2. 분과별 운영 결과19
3.3. 차세대 이차전지 연구성과 대회 홍보4
3.3.1. 차세대 이차전지 연구성과 전시회 (부제 : "알성달성" R&D 성과
달성을 이루다(成)) 개최 및 전시 42
3.3.2. 2023 대한민국 과학기술대전 전시 48
4. 연구 결과 활용 계획 및 기대 성과 50
4.1. 연구 결과 활용 계획 50
4.2. 기술적 측면 기대성과 55
4.3. 경제적 및 산업적 측면 기대성과5
4.4. 사회적 측면 기대성과 52

1. 연구개요

1.1. 연구 추진 배경 및 필요성

- ◆ (차세대 이차전지 기술) 현재 상용화 중인 리튬이온전지의 에너지밀도 및 안정성의 한계를 극복하고, 글로벌 모빌리티 분야를 포함하는 다양한 산업분야에서 활용가능한 이차전지 기술을 의미
- ◈ (협력 개방형 생태계) 차세대 이차전지 분야에 관련된 학계·산업계· 정부출연연구소·정부부처들간 상호보완적 피드벡을 토대로 협력형 성장이 가능한 생태계
- ◈ 가속화된 기후변화와 지속가능한 친환경 에너지저장장치 개발에 대한 필요성으로 인해 차세대 이차전지 기술시장은 이미 급속도로 성장 중이므로 차세대 이차전지 개발을 위한 국내의 연구 개발 생태계의 구축이 시급함
- ◆ 글로벌 차세대 이차전지 기술시장 선점을 위한 국내의 차세대 이차전지 연구생태계 구축의 필요성 및 운영방안을 제시하고자 함
- □ (가속화된 지구온난화와 2050탄소중립 성취의 시급성) 근대화에 접어들어 인류 문명의 발전 속도가 기하급수적으로 빨라짐에 따라, 발전에 필요한 에너지 자원인 석유 및 석탄과 같은 화석연료의 소모량이 함께 기하급수적으로 증가함. 발전에 따른 과도한 화석연료 사용의 대가로써 기후변화, 천연자원 고갈 및 동·식물 생태계의 교란 등 인류의 지속 가능한 미래 생존환경구축을 위협하는 결과를 초래함.
- O 앞으로 지속 가능한 문명의 발전과 기후 온난화 등의 재앙을 막기 위해서는, 이산화탄소 등의 온실가스 배출량의 감축 등 대기 중으로 배출하는 탄소량을 줄임으로써 지구의 평균 온도 상승을 저지해야 함.
- 국제사회의 공동 대처 노력으로 1997년 교토의정서, 2015년 파리 유엔기후변화협약 등 대기 중 온실가스 발생을 제한하려는 다양한 국제사회의 움직임이 있어 옴.

Global temperature departure from 1981-2010 average

[그림] 1981 ~ 2010 의 4월 평균 지구 온도 대비 2021년 4월의 지구 온도 상승분 비교, (삽입 사진: 지구온도 상승으로 인한 2020년 캘리포니아와 호주의 화재 사진)>

- 유럽연합, 캐나다, 남아프리카공화국이 2050년까지 탄소중립을 약속했고 뉴질랜드, 칠레, 덴마크, 프랑스, 헝가리, 영국은 한발 더 나아가 2050 목표를 법제화함. 오스트리아(2040), 아이슬란드(2040), 핀란드(2035) 같은 나라는 2050년보다 더 야심 찬 목표를 세웠고, 최근 대한민국(2050)이 탄소중립 선언 대열에 합류함.
- 그러나 최근 2021년, 지구의 생태계가 매우 크게 바뀔 수 있는 변곡점 온도인 지구의 평균 온도 상승량 1.5도에 도달하는 시기가 과거에 예상한 2050년에 비해 10년이 빠른 2040년 이전으로 재예측 되면서 당장의 탄소 배출을 줄이는 일이 시급해짐.
- 전지구적 탄소 배출을 줄이기 위해서는 탄소 순배출양이 0이 되게 만드는 '탄소중립'을 이루어 내는 것이 중요함. 탄소중립을 이루는 두 가지 방법 중 첫 번째 방법은 생활 및 산업 전반에서 온실가스 배출 자체를 하지 않는 것이며, 두 번째는 배출된 온실가스를 다시 회수하거나 감축할 수 있는 활동에 투자하는 것임(Carbon-offsets).
- 근본적인 온실가스 배출을 줄이기 위해서는 화석연료를 퇴출하고, 100% 재생에너지로 전환하는 동시에 에너지 사용의 효율을 높여야 함. 이 같은 변화는 전력뿐 아니라 교통, 제조 등사회 전 분야에 걸쳐 이뤄져야 함.
- □ (탄소중립 달성 및 에너지 산업 경쟁을 위한 이차전지 역할의 부각) 전 세계적 탄소중 립을 실행하기 위해 각국의 이산화탄소 발생량 규제가 강화되었으며, 신재생에너지 보급의 확대 및 전기자동차(Electric Vehicle, EV)의 판매 의무화가 추진되고 있음. 이에 따라, 생산된 에너지를 효율적으로 활용하고 미래의 수송 장치용 에너지저장장치 시장을 선점할 수 있는 차세대 에너지 저장 장치의 중요성이 부각되고 있음.

[그림] 이차전지의 용도별, 국가별 시장성장 전망 및 차세대이차전지 시장 선점 전략

- 온실가스 배출을 줄일 수 있는 전기자동차에 대한 수요가 폭발적으로 증가함에 따라, 전기자 동차의 주행거리를 증가시킬 수 있는 고에너지밀도 이차전지 시스템의 필요성도 함께 증가함. 전기자동차의 다양성 증가와 더불어 이차전지의 대형화 및 다변화 요구도 증가하고 있으며 에너지밀도, 전지수명 및 안정성에 대한 기준도 함께 높아지고 있음.
- O 현재 상용화 전기자동차의 전력공급용 이차전지인 리튬이온이차전지의 경우, 니켈이 고함유 된 양극재 (니켈 80% 이상) 를 활용하여 고에너지 밀도 (650 ~ 750 Wh/L)를 달성하였으며 완충전시 약 500 km의 거리를 주행할 수 있음.
- □ (이차전지의 정의) 전지(Secondary Battery)는 물질의 물리적 혹은 화학적 반응을 통해 전기 에너지를 생성하고 공급할 수 있는 장치임. 다양한 전지 시스템 중 에너지를 저장하였다가 필요할 때 전기에너지로 변환하는 것이 반복적으로 가능하며, 일정시간 이상 사용할 수 있는 특징을 보유한 전지를 이차전지(Secondary Battery)로 정의함.
 - O 이차전지로 널리 이용되는 리튬이온전지는 충전 시에는 양극에 있는 리튬이온이 음극으로 이동하며 양극활물질의 산화(음극활물질의 환원)가 일어나고, 방전 시에는 반대로 리튬이온이 음극에서 양극으로 이동하며 양극활물질의 환원(음극활물질의 산화)이 일어남
 - O 리튬이온전지를 구성하는 4대 핵심소재는 양극활물질, 음극활물질, 분리막, 전해질이며, 가장 널리 사용되는 양극활물질은 리튬니켈코발트망간의 삼원계 전이금속 산화물 (LiNi_xCo_yMn_zO₂), 음극활물질로는 그라파이트 (Carbon), 분리막으로는 다공성 폴리올레핀계 열 (PP, PE), 전해질로는 리튬염이 첨가된 유기용매(예, LiPF₆ in EC/DMC/EMC 등)가 있음

[그림] 리튬이온전지의 원리 (출처: LG에너지솔루션)

□ (차세대 이차전지 기술의 정의) 차세대 전지 기술이란 이차전지, 수소연료전지, 현 세대의 전지가 직면하고 있는 성능한계를 돌파하고, 나아가 신시장 창출 및 글로벌 기술 경쟁 주도권을 확보할 수 있는 과학기술 혁신형 전지 기술임

- O 소형 및 모바일 분야를 주도하거나, 기술 성숙도 한계에 의해 전개되지 못하던 현세대 전지 기술은 에너지밀도, 안전성, 비용 측면에서 한계로 인해 소비자가 실사용하기에는 위험부담 을 가지고 있음
- O 월등한 성능을 비롯하여, 폭발 및 화재 위험성 없이 안전하게 사용할 수 있으며, 또한 누구 나 사용 가능하도록 저가격 특성을 보장하는 차세대 전지 기술을 통해 새로운 응용 기기 분 야를 전개함은 물론, 미래 시장을 선도할 수 있는 꿈의 전지 기술임
- □ (차세대 이차전지 기술의 종류) 이차전지를 구성하는 4대 핵심요소(양국, 음국, 분리막, 전해액)의 종류 및 이온 캐리어의 종류에 따라 전고체전지, 레독스흐름전지, 리튬황전지, 소듐 (나트륨)이온전지, 리튬공기전지, 다가이온전지, 수계아연전지, 해수전지 기술 등으로 분류 가능함
 - O (전고체전지) 이차전지의 4대 구성요소 중 분리막과 전해액을 고체전해질 및 이를 포함한 복합 재료로 대체하여 안전성을 근본적으로 향상시킨 차세대 이차전지로 리튬 금속과 고전압양극의 사용이 가능하여 고에너지밀도 구현이 가능함
 - O (레독스흐름전지) 산화수가 서로 다른 액상의 음극, 양극 및 전해액으로 구성되며 레독스 쌍의 전위차에 의해 기전력이 발생하여 가역적으로 충전과 방전이 가능한 시스템으로, 용량과 출력을 독립적으로 설계 및 제조할 수 있으며 생산설비 비용이 낮고 사용된 전해액을 재사용할 수 있어 저가화가 가능함에 따라 타 전지 대비 가격 경쟁력이 높은 장점이 있음
 - O (리튬황전지) 유황을 양극활물질로 사용하는 전지 시스템으로 유황의 높은 이론용량 (1680mAh/g)을 기반으로 하기 때문에 이론적으로 기존의 리튬이온전지 대비 높은 에너지밀 도가 가능함
 - O (나트륨이온전지) 반응물질로 리튬 이온 대신 나트륨이온을 이용하는 것이 특징으로, 리튬과 유사한 화학적 성질을 지닌 나트륨을 채용하기 때문에 기존의 리튬 이차전지와 유사한 원리로 작동하며, 저가의 원료를 사용하는 우수한 가격 경쟁력을 바탕으로 주로 ESS용 이차전지 시스템으로의 활용 가능성이 높음
 - O (리튬공기전지) 리튬 금속을 음극으로 사용하고, 탄소 등의 전도성 소재로 구성된 공기극 집 전체 위에서 대기 중의 산소와의 전기화학 반응을 통해 리튬산화물을 생성 및 분해하는 전 지 시스템이며, 무게당 에너지밀도를 혁신적으로 증가시킬 수 있는 전지임
 - (다가이온전지) 충방전을 위한 이온캐리어로 마그네슘(Mg²+), 칼슘(Ca²+), 알루미늄(Al³+)과 같은 다가 이온을 사용하는 에너지 저장 기술이며, 입자 당 전하량이 높기 때문에 전기용량 측면에서 유리하고, 풍부한 매장량 덕분에 안정적인 공급이 가능함
 - O (수계아연전지) 물을 기반으로 한 전해액 환경에서 아연 이온(Zn2+)이 전하 전달 매개체로서 양극과 음극 사이를 이동하면서 충방전이 이루어지는 이차전지임
 - O (해수전지) 자연의 바닷물을 양극활물질로 사용하여, 해수에 녹아 있는 소금(NaCl)과 물 (H_2O) 의 전기화학 반응을 통해 에너지를 저장하고 사용하는 전지 시스템임

- □ (현재 리튬이온이차전지의 한계) 현재 상용화 리튬이온이차전지는 상술한 바와 같이 높은 에너지밀도를 달성하였으나, 추가적인 에너지밀도의 상승 요구와 더불어 고에너지 밀도 전지 가 수반하는 고전압구동시 소재의 열화 및 열안정성 등의 문제가 남아있음.
 - O 현재 리튬이온이차전지의 제한적 에너지밀도, 안전성, 충전속도, 저온성능 및 비용 한계 문 제를 혁신적으로 개선함 수 있는 차세대이차전지 기술의 개발이 필수적임.
 - (에너지밀도) 1회 충전 시 주행거리는 전기차의 가장 중요한 요소로, 현재의 리튬이온이차 전지의 경우 양극재의 니켈 함량 증가, 음극재 실리콘 첨가량 증대 등을 통한 에너지밀도 개선이 이루어지고 있으나, 최근에는 전극소재들의 실용량적 한계점에 도달한 수준이므로 한계를 극복할 수 있는 차세대 이차전지형 기술개발이 요구됨.
 - (안전성) 현재 리튬이온이차전지는 가연성 전해액 사용으로 인한 화재 문제가 대두되고 있으며, 이는 전지의 열관리와 전지의 화재 시 전지 소재의 독성과 폭발력을 제어하기 위한 고안전성 고체전해질로의 대체, 전지 셀 구조 개선 등을 고려하는 계기가 됨.
 - (충전 속도) 급속충전을 위해서는 고전압 고전류 구동이 가능한 이차전지의 전극소재가 필요하며 신규 고성능 전극소재 도입을 통해 충전속도 개선을 위한 노력을 진행 중이나, 목표치인 충전 시간 10분 이내를 달성하기 위해서는 아직 한계점이 존재함.
 - (비용) 지속적인 리튬 등의 원료 가격변동에 따른 비용 증가로 인해 저가형 전지 시스템 개발이 필요함
- □ (에너지 저장장치에 대한 국제 전략 무기화 및 정부지원) 2030년에는 리튬이온전지의 공급보다 수요가 많아지는 문제가 대두될 것으로 예상됨. 또 한, 리튬전구체 가격의 상승 및 리튬자원의 국제 전략무기화는 리튬이온전지에 대한 상호보완적 혹은 대체가능한 이차전지에 대한 개발을 촉구하고 있으며, 이에 따라 차세대 이차전지 개발에 대한 국제간 경쟁과 정부차원의 지원이 이루어지고 있음.
 - O 국제 에너지저장장치 시장 선점을 위한 이차전지의 개발 및 산업 경쟁 방식은 국가별 경제 상황에 따라 다양한 형태로 발생하고 있음. 예로, 2022년 미국의 인플레이션 감축법 (Inflation Reduction Act, IRA)에 의한 공급망 이슈를 꼽을 수 있음.
 - * 주요 원료 및 이차전지 부품·소재를 일정비율 이상 북미 또는 미국과 FTA가 체결되어 있는 국가에서 생산한 전기차 구매시에만 세액공제 제공
 - * 중국 등 우려 국가에서 생산된 배터리·핵심광물을 사용한 전기차는 세액공제 제외

[그림] 미국 인플레이션 감축법 중 전기차 관련 세액공제 주요 내용

○ 해외의 경우 정부 주도의 산·학·연이 참여하는 차세대 이차전지 개발 프로젝트들을 운영 중임. 특히 미국과 중국의 경우 원천기술 R&D에서부터 기술의 실질 산업화를 위한 기업지원 정책에 이르기까지 정부 주도의 전방위 지원을 운영하고 있음.

[그림] 해외의 정부주도 차세대 이차전지 연구 개발 지원 현황

- (우리나라의 차세대 이차전지 기술 개발 지원) 우리나라 정부는 에너지저장장치분야 국 가기술경쟁력 상승을 위해 2021년 7월 8일 '2030 이차전지 산업(K-Battery) 발전 전략'을 수립하여 발표하였음. 해당 전략을 통해 2030년까지 민간기업에서 40조 원 이상을 투자하고, 정부는 연구개발(R&D), 세제, 금융 등을 적극 지원하며, 이차전지 전문·현장인력을 연간 1100명 이상 양성 및 민간의 해외광물 개발 프로젝트를 지원하기로 함.
- O 나아가 2022년 10월 28일 '12대 국가전략기술'중 한 분야로 이차전지를 선정하고, 글로벌 이차전지 분야에서 초격자 기술 개발을 통한 글로벌 기술 경쟁력 향상을 위해 지원할 것을 발표함.

[그림] 2030 이차전지 산업(K-배터리) 발전 전략, 2021년 7월 8일 발표

[그림] 우리나라의 12대 국가전략기술로써 이차전지의 선정 및 차세대 이차전지 초격차 기술 개발을 통한 기대효과

- □ (차세대 이차전지의 원천기술 및 원천특허의 확보의 시급성) 전 세계적으로 리튬이온전 지의 높은 기술성숙도 대비 차세대 이차전지기술은 아직 초기단계에 있음. 그러나 차세대 이 차전지는 연구 개발을 통한 원천기술 확보가 유리하고 미래 에너지저장장치 시장 변화에 유연하게 대처할 수 있으므로 빠른 원천기술 및 원천특허의 확보가 시급함.
 - 리튬이온전지에 대한 상호보완형 또는 대처형 이차전지기술들에는 나트륨이온전지, 마그네슘 전지, 리튬황전지, 리튬공기전지, 전고체전지, 수계형 아연전지, 흐름전지 등 이 있음. 이처 럼 다양한 이차전지 기술들은 리튬이차전지가 사용되기 어려운 환경에 대신 적용되거나 보 완적으로 사용되어 종합적인 에너지 저장 및 사용의 효율을 증가 시킬 수 있음.

- 소형과 더불어 중대형 이차전지 산업도 전면적으로 확대됨에 따라 상위 언급한 차세대 이차 전지 기술의 선점 및 선도를 위한 국가간 경쟁이 치열할 것으로 예상됨. 이미 중국의 배터리 회사 CATL은 이미 차세대 전기자동차용 이차전지로써 나트튬전지의 시판을 발표하며 새로 운 국제시장 형성 및 선점에 나서고 있음.
- O 향 후 수년 동안이 차세대 이차전지 기술에 대한 중요 원천기술 및 원천특허의 확보에 있어서 매우 중요한 시기이며, 이 시기에 확보한 원천기술과 에너지 시장은 향 후 수십년간의 에너지 저장 산업의 우위권과 국가적 경제수익을 결정할 수 있으므로 국내의 기술 개발과 협력을 통한 에너지 저장 기술 생태계 구축을 서둘러야 함.

[그림] 과거 및 미래 이차전지 기술 개발 과정의 비교

- □ (정부·연구기관 긴밀한 협력을 통한 기술 혁신 생태계 구축 필요) 다양한 전지 기술들의 특색을 살리면서 세계적 경쟁성을 갖는 아이템으로 자리매김하기 위해서는 과학기술정보통신 부 차원의 원천기술 개발의 상세 계획 수립과 더불어 산·학·연·관 간의 긴밀한 협력을 통한 지속 가능한 기술 혁신 생태계 구축이 필요함.
 - O 국가전략기술로 지정된 이차전지 개발 목표를 성취하기 위해서는 다양한 차세대 전지 기술 들의 유사성과 차별성을 구별하여 각 전지의 목적에 맞는 개발 방향을 상세히 수립하여야 함.
 - O 신재생에너지를 활용하기 위해 태양광, 풍력, 수력, 지열 등으로 친환경적인 전기 에너지를 생산하더라도, 에너지를 시간과 장소에 구애받지 않고 보다 효율적으로 관리하고 이용하기

위해선 환경에 따라 가장 효율적인 이차전지를 사용하여 에너지를 저장하는 것이 필수적임.

- O 다양한 차세대 이차전지 기술들의 개발 및 활용을 위해서는 각 이차전지에 대한 전문적 기술을 가지고 있는 산·학·연들이 필요 부분에 대한 연구적, 기술적 협업뿐만 아니라, 기술 수요 설계 및 성과 분배까지 체계적으로 협업할 수 있는 시스템의 정착이 필수임.
- O 이에 따라 산·학·연·관 간의 기술 교류 및 협력을 통한 차세대 이차전지 미래기술개발과 기술 수요를 통한 성과 활용 및 분배를 할 수 있는 기술 혁신 생태계 구축 방법에 관한 연구가 필요함.
- O 탄소중립 및 미래 차세대 이차전지 시장 선점을 위해서는 정부주도적 차세대 이차전지 개발 전략 수립과 더불어 신규시장 발굴 및 확대를 위한 지속 가능한 연구 및 개발환경 구축이 필요함.

[그림] 기후변화 및 글로벌 에너지 기술 패권 경쟁 심화

1.2. 연구 목표

- □ 차세대 이차전지 분야 미래기술 수요를 발굴하고 R&D 고도화 및 성과 교류·협력 등을 위한 산·학·연·관 연구협력 체계 구축 운영 및 차세대 기술혁신 생태계 구축 방안 마련
- 차세대 이차전지 분야 민간수요 발굴 및 R&D 연구역량 결집을 위한 융합 네트워크 구축방안 마련
- 민관 공동연구, 성과활용 방안 등을 통한 지속 가능한 R&D 기반 생태계 조성 방안 제시
- 산·학·연·관 정기 성과교류회 및 국내외 연구자 포럼 등을 통한 차세대 이차전지 성과 공유 진행
- 차세대 이차전지 관련 정부 정책 과제 발굴 및 의견수렴을 위한 민관소통 활성화 방안 제시
- 민간수요 기반 R&D 사업의 지속적인 기획·연계를 위한 민관 연구협의체 구성·운영
- 민관 연구협의체를 통한 차세대전지 유망기술 수요 및 기술선도국과의 국제협력 과제 발굴

2. 연구 추진 계획 및 내용

2.1. 연구 추진 계획

□ 세부 연구 추진 계획 및 진도 달성율 (총 10개월)

세 부					연	구 추	진 기	간				계획대비
연구내용	연구자	1	2	3	4	5	6	7	8	9	10	진도율 (%)
차세대 이차전지 연구 생태계 구축을 통한 미래 기술 수요 발굴	정경윤 외 2 명						-	계호 수 호				100
산·학·연 연구자간 네트워킹를 통한 R&D 고도화 및 협력 개방적 기술혁신 성과활용 방안 마련	정경윤 외 2 명									→		100
차세대 이차전지 기술교류 및 지속적인 R&D 연계사업 구상을 위한 민관연구협의체 구성·운영	정경윤 외 2 명										-	100
사업진도	(%)	10	20	30	40	50	60	70	80	90	100	

※ 진도설명

- (1) 차세대 이차전지 연구 생태계 구축을 위한 민간수요 기술 발굴 및 네크워킹 체제 구축 완성율
- (2) 산·학·연 네트워킹을 통한 이차전지 R&D 기술 성과활용 방안 및 정부 정책과제 발굴 계획 추진율
- (3) 차세대 이차전지 기술교류 및 연계사업 구상을 위한 민관연구협의체 구성 및 운영율

2.2. 연구 추진 세부 내용 및 범위

□ 차세대 이차전지 연구 생태계 구축을 위한 미래 수요기술의 발굴 방안 제시

- O 차세대 이차전지 분야 민간수요 기술의 분석 및 기술혁신 생태계 구성을 위한 민간수요 기반 이차전지 원천기술 개발 방향 도출
- 연구역량 결집을 통해 이차전지 R&D 고도화를 위한 협력적 개방형 융합 네트워크 구축방안 마련

- □ 국내외 전문가 및 관련 기업의 협조를 통한 차세대 이차전지 분야의 민간 수요기술 도출
- O 현재 이차전지의 연구분야 혹은 산업분야에서 선도적인 위치에 있는 전문가 및 전문기관을 적 극 활용하여, 현재 사용되고 있거나 사용이 기대되는 차세대 이차전지 민간 수요기술에 대한 동향 분석
- 논문 및 특허 분석을 통한 차세대 이차전지 기술개발 동향 파악
- □ 다양한 R&D 분야 전문가를 활용한 차세대 이차전지 수요기술의 개방적 기술혁신 네 트워크 구축 방안 도출
- O 다양한 차세대 이차전지 수요기술들이 가지고 있는 과학적·산업적 문제들을 정의함
- 차세대 이차전지 수요기술들을 세부 연구 주제별로 재분류하고, 산·학·연 전문가들과 네트워킹을 통해 기술 주제별로 연구역량을 응집시킬 수 있는 개방적 상호협력관계 형성함

- 1. 차세대 이차 전지 수요 기술 분석
- 이차전지 전문가 및 전문기관을 통한 민간수요기술 동향파악
- 논문 및 특허 조사를 통한 기술의 연구동향 파악

- 수요 기술 혁신 네트워크 구축
- 차세대 이차전지 수요기술의 과학적·산업적 문제점 파악
- 다양한 차세대 전지수요기술들을 세부 연구 주제별로 재분류
- 공통된 연구주제별로 연구역량을 집중시킬 수 있는 개방적 연구 협력 네트워크 구축

[그림] 차세대 이차전지 수요기술 개방적 네트워크 구축 방안 개요도

- □ 산·학·연 연구자간 네트워킹를 통한 R&D 고도화 및 협력 개방적 기술혁신 성과활용 방안 수립
- O 산·학·연간 협업 연구의 유기적 연구수행을 위한 정기 연구성과 교류회 추진
- O 국내외의 차세대 이차전지 전문가들 초빙연구 및 연구 주제별 포럼 개최 등을 통한 차세대 이차전지 개발 아이디어의 확장 및 기술교류 방안 수립
- 공유된 산·학·연 분야별 연구성과를 통한 새로운 차세대 이차전지 기술 개발 내용 제안
- 차세대 이차전지 관련 정부 정책 과제 발굴 및 의견수렴을 위한 민관소통 활성화 방안 제시

- □ 산·학·연·관간에 개방적 성과 공유를 통한 신규 차세대 이차전지 미래기술 발굴 방안 도출
- 산·학·연·관의 전문가들이 정기적 포럼을 통해 차세대 이차전지 기술 연구의 새로운 성과를 공유
- O 지속 개발 가능한 원천기술에는 개방적으로 외부 연구기관과 협력하여 초기 생산기술까지 개발하는 R&D 고도화 및 차세대 이차전지 연구 생태계를 형성
- 신규 차세대 이차전지 기술의 정량적 및 정성적 가치 평가 기준 확립을 위한 전문가 활용
- □ 민관 공동연구의 성과 교류 및 활용 방안을 논의하는 민관협의체의 구성 및 운영방법 모색
- 산·학·연 전문가들과 정부의 관계부처 구성원이 함께 민관협의체를 구성하여, 개방적 소통을 통해 차세대 이차전지 미래기술의 연구방향을 설정하고 이해를 바탕으로 한 협력관계를 형성함
- O 기술개발의 연구성과 발생시 성과를 공유하고, 목적에 맞게 활용하는 정책적 방안을 구상하기 위한 국내외 정책 수립 전문가를 활용함
- O 민관 공동연구를 통해 진행된 R&D 사업의 성과를 이용하여 실질적 사업화 진행시 학·연·관 차원 제도적 지원 방안들을 수립함
- O 사업의 지속적인 연계 및 국제적 생태계 형성을 위한 정부 부처 과제 및 국제 협력과제의 발 굴 전략을 수립함

[그림] 민관협의체의 구성 및 운영 계획안

□ 차세대 이차전지 민관 협력 개방형 생태계 운영 방안 구상

산·학·연·관 협업 연구

- 민간수요기술 조사 및 확정
- 정기적 포럼 개최를 통한 기술 연구 성과 공유
- 지속 개발 가능한 차세대 전지 원천기술 발굴
 - 개발된 원천기술 기술의 상용화 가능성 평가

민관 연구협의체의 운영

- 정부 부처의 제도 적 지원을 통한 원천기술의 상용화 연구 지원
- R&D 사업의 고도화 지원
- 신규 기술의 시장가치 평가 기준 마련 (전문가 활용)
 - 신규 차세대 이차전지의 국내 및 국제 협업 과제 발굴

[그림] 차세대 이차전지 민관 협력 개방형 생태계 운영 방안

3. 연구성과

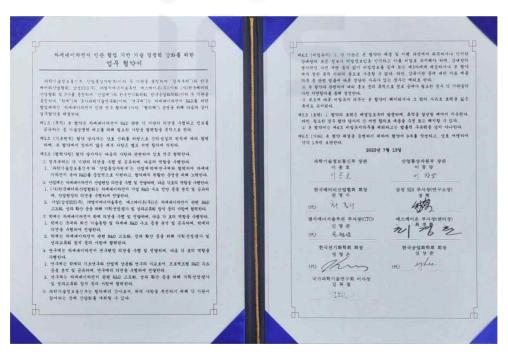
3.1. 민관협의체의 구성

□ 차세대 이차전지 연구 생태계 구축을 위한 네트워킹 구성 및 민관협의체 운영

- O 민관협의체 업무 협약식 개최 (2023.07.13.)
 - 세계적으로 이차전지 등 국가전략기술을 둘러싼 기술패권 경쟁이 치열한 가운데 미국, EU, 중국 등 주요국들은 첨단산업 발전과 국가 안보를 위해 범국가적 차원에서 역량을 결집하고 있는 중임.
 - 대한민국 정부도 이에 대응하여 올해초, 「국가전략기술 육성에 관한 특별법」을 제정하였으며, 미래먹거리 해결을 위한 신성장 4.0전략의 하나로 반도체·디스플레이·이차전지 등 3대 주력기술 분야 초격차 R&D 전략을 발표(4월)함.
 - 신성장 4.0전략 이행을 위한 후속조치로 반도체(5월), 디스플레이(6월) 민관협의체 구성한 바 있으며, 이어서 본 사업과 연관하여 이차전지 협의체를 출범하였음.
 - 차세대이차전지 분야 산·학·연 대표기관으로 한국배터리산업협회, 한국전기화학회, 한국공업 화학회, 국가과학기술연구회에서 참여함
 - 관련 대학, 연구소 관계자외 배터리 제조 기업인 삼성 SDI㈜, LG에너지솔루션㈜, SK온㈜ 등에서 약 100여명이 참석함.

◇ [표] 차세대이차전지 민관 협의체 참여기관

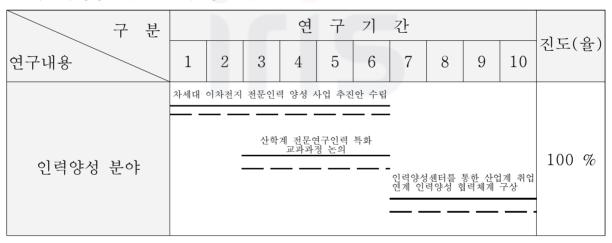
정부	▶ 과학기술정보통신부, 산업통상자원부
산업계	▶ 한국배터리산업협회, 삼성SDI, LG에너지솔루션, SK온
학계	▶ 한국전기화학회, 한국공업화학회
연구계	▶ 국가과학기술연구회


- 해당 협의체는 각계 소통 및 교류 지원과 함께 정부의 이차전지 R&D 정책·사업에 민간의 수요와 의견을 상시적으로 반영하는 역할을 맡는 것을 목표로 함.

O 민관협의체 세부 운영계획

- (협의회 개최) 年 4회(분기별) 정기 협의회 (분과 및 총괄위원회)를 개최하는 것을 원칙으로 하고, 대내외 환경에 따라 추가 수요가 있을 경우 임시 협의회를 추진함
- (주요 논의사안) 차세대이차전지 관련 1. 전문연구인력 양성, 2. R&D 기획·추진, 3. 산업계 의견 도출, 4. 국제협력 등 주요안건들을 사전 발굴 및 논의함

[사진] 민관협의체 업무 협약식 개최 (2023.07.13.)



[사진] 민관협의체 업무 협약서

3.2.2. 분과별 운영 결과

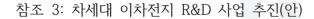
- 1. 연구인력 양성 분과
- 차세대이차전지 전문연구인력 양성을 위한 **인재양성센터* 신설('24~) 논의 및 산·학 연구인력 수요 도출 방안** 논의
- 차세대 이차전지 전문인력 양성 사업 추진(안) 작성 (참조 1)
- 차세대 이차전지 분야의 주도권을 확보하고 민간수요 증가 대응을 위한 석·박사급 전문인력 양성 지원을 목표로 함
 - * 차세대이차전지 분야에 특화된 석·박사 전문연구인력 양성 센터 구축안 계획
- (인력수요 도출) 산업계 및 학계의 전문연구인력 및 핵심 역량에 대한 수요 조사 및 공유로 인재양성 센터(2개) 특화 교과과정 개발('24년 신규)
 - * 산업계의 수요기술 및 학계의 미래기술 연구주제 등을 도출하여 교과과정에 반영
- (인력양성 협력) 계약정원제 수요도출 → 인력양성센터 → 산업계 취업으로 연계되는 **만·관 협의체의** 인력양성 협력 체계의 구상
 - * 계약정원제 도입으로 우수 인력의 디스플레이 분야 유입 확대, 센터 선정을 통한 우수 인력의 석· 박사 진학 유도, 지역 산업계 취업 연계로 양질의 인력 유입 유도
- *참조 1: 차세대 이차전지 전문인력 양성 사업 추진(안)
 - (목적) 차세대이차전지 분야 주도권 확보와 민간수요 증가 대응을 위한 석·박사급 전문인력 양성 지원
 - (총사업비 / 기간) 130억원 / '24~ '30
 - (수행방식) 공모 (컨소시엄 간 자율경쟁 방식 공모)
 - ('24년 예산) 수요맞춤형 인력양성을 위한 사업비 1,000백만원 요구
 - 2개 센터 × 1,000백만원 × 6/12개월 = 1,000백만원 ※ 혁신 원천 소재 설계/개발 인력, 혁신 셀 설계/고도화 기술 인력
 - (차별성) 우수인력 유입 확대를 위한 계약정원제, 차세대 이차전지 분야 전문인력 양성을 위한 특화 프로그램 개발
 - 기존 인력양성 사업의 경우, 리튬이온전지 기술 인력 양성에 집중
 - 차세대 이차전지 분야에 특화된 별도 인력양성 프로그램 수립·운영
 - (운영방안) 우수인력 유입 확대를 위한 계약정원제 검토
 - (정원) 기존 일반학과 정원의 20% 이내 → '첨단학과'의 정원 확대 가능 여부 점검 필요
 - (학과운영) 산업체가 필요경비의 50% 이상 분담 → 필요경비 기준 정의 필요
 - (학생선발) 산업체 채용 시, 모집정원 별도 운영 → 채용협약 상세 방안 마련 필요
 - 참조 2. 계약정원제 개요 및 계약학과와의 비교

- (교과과정) 차세대 이차전지 전문인력 양성을 위한 특화 교과과정 논의
- (**산업체**) **소재, 공정/공법, 기계적물성 등 다양한 학문분야의 지식을 습득**할 수 있는 교과과정 마련 요구
- (연구소) 연구소의 적극적인 참여를 유도하기 위해서는 학연생/연수생 제도를 활용한 학·연 협 업 방안 마련
- '25년도 신규 차세대이차전지 전문인력 양성 사업 추진 방향 논의 (참조 6. '25년도 차세대 이차전지 R&D 기획 방향 논의 회의록)
- 현 계약정원제 사업 시행 계획을 대학의 학과 스켸쥴에 맞도록 조정 방안 도출
- 사업의 첫 학기는 기존의 대학원 입학 정원에서 계약정원제의 정원으로의 변환지원을 통해 지원자를 확보하고, 내년부터 신규 지원자들을 먼저 지원받아 사업을 운용하는 계획 수립
- 계약정원제의 석사 및 박사 인원 운용 비율을 대학교의 목적 및 지역에 맞추어 운영하는 방안 제시
- 기업은 계약학과와 계약정원제의 운영시, 한 학과에 여러 기업이 동시에 지원하면서 박사급 인원을 지원하는 방안 제시
- 연구인력 양성 분과 진도표 (진행 완료)

(표시요령) ----- 당초계획 — 진 도

- *참조 2: 계약정원제 개요 및 계약학과와의 비교
 - 계약정원제 개요
 - (개념) 기존 첨단분야 학과에 별도 정원*을 한시적으로 증원하여 기업 맞춤 교육과정 운영
 - 기존 학과 정원의 20% 이내, 정원외로 운영되어 수도권정비법상 정원 규제 미적용
 - (장점) 별도 학과 설치 없이 신속·효율적인 인력양성이 가능하며 소수의 정원으로도 운영이 가능하여 기업 수요에 유연한 대응 가능

	등이어 기업 구표에 규인한 네공 기증	게야되이게					
구분	계약학과	계약정원제					
운영 모형	■ 별도 학과 설치 일반학과 (정원 내) + 계약학과 (정원 외)	■ 기존 일반학과 내 추가 운영 일반학과 (정원 내) 계약 정원 미설치)					
정원	■ <u>입학 정원의 50% 이내</u>	■ 기존 일반학과 정원의 20% 이내					
학과개설 준비	■ (산업체→대학) 위탁교육 의뢰 및 협의 ■(산업체, 대학) 교육과정 개발 * 모체학과 교육과정을 바탕으로 산업체 요구 반영	■ (산업체→대학) 위탁교육 의뢰 및 협의 ■ (산업체, 대학) <u>교육과정 협의</u> * <u>기존 일반학과 교육과정에 산업</u> <u>체 요구 반영한 교육과정 추가</u> 개발					
E 1	(대학→교육부) 설치 신고 (협약체결 2주전)(산업체, 대학) 협약 체결	 ● (대학→교육부) 설치 신고 (협약체결 2주전) ● (산업체, 대학) 협약 체결 					
학생 선발	■고등교육법 시행령 제34조에 따라 일반전형 또는 특별전형으로 선발 * 대인기본사항(대교협) 준수	■ 고등교육법 시행령 제34조에 따라 일반전형 또는 특별전형으로 선발 * 대입기본사항(대교협)을 준수하 되, 모집전형 별도 운영(산업체 채용시)					
학과 운영	■(대학) 교육과정 운영	■(대학) 교육과정 운영 * <u>기업 요구 별도 교육과정 이수</u> <u>기능</u>					
	●(산업체) 필요경비의 50% 이상 부담●(대학) 폐지 신고 (계약기간 종료 2	■(산업체) 필요경비의 50% 이상 부담					
학과 폐지	●(대역) 폐지 신고 (계약기간 공료 2 주전)■(산업체, 대학) 계약종료	■(대학) 폐지 신고 (계약기간 종료 2 주전)■(산업체, 대학) 계약종료					
취득학위	■ <u>계약학과 내 세부전공</u> 학위 취득	■ <u>일반학과 내 세부전공</u> 학위 취득					
취업	■ 졸업 후, 채용협약 기업 취업	■ 졸업 후, 채용협약 기업 취업					


2. 기술·산업 분과

- (R&D 기획·추진) '차세대전지 초격차 R&D전략'('23.4) 구현을 위한 세부 요소기술 조사 및 R&D 기획, 국내·외 기술·동향을 논의함
- (1분기) 국내·외 주요 기술정책 및 동향* 공유
 - * 주요국 차세대이차전지 연구 동향, 주요 연구 인프라 현황, 차세대전지 신기술 제품화 및 적용 사례 등 분석 결과 공유를 통한 민·관 협의체 아젠다를 논의함
- (2분기) 초격차 R&D전략 內 핵심기술 확보를 위한 요소기술 관련 산업계 수요 도출 및 R&D 지원 방안(과기정통부-산업부(협회) 연계)을 논의함
- 차세대 이차전지 R&D 사업 추진안 작성
 - * 용도 맞춤형 리튬이온전지(Electric Vehicle (EV), 대형 Energy Storage System (ESS), Urban Air Mobility (UAM))의 성능한계 (안전성, 소재자립, 효율성, 내구성)를 혁신하는 차세대 이차전지 원천기술 개발 목표 (참조 3. 차세대 이차전지 R&D 사업 추진(안))
- (3분기) 민간수요 조사·발굴 내용을 기반으로 신규사업·과제를 제안함
- '24년에는 안전성 향상을 위한 수계아연전지 및 소재자립화를 위한 나트륨이온전지에 대한 연구가 우선 진행될 수 있도록 관련 기술을 공유하고 관련 상세 과제기획 우선 진행 (참조 4. 세부 과제별 RFP)
 - * 민·관 협력 기반 R&D사업 또는 과제 기획·제안 등 지원방안 논의
- (4분기) 연구성과 공유·홍보 및 차년도 기술전망 논의
 - * 당해연도 R&D성과 공유, 우수 성과자 포상, 기술 수요기업의 R&D 참여지원 추진 방안 등 논의
- (산업계 의견 도출) 차세대이차전지 기술개발, 인력양성, 국제협력 등과 관련하여 산업계 의견 논의 및 과기부 정책에 반영 방안 도출을 위한 토론을 진행함
- (기술수요) 차세대이차전지 관련 산업계 기술 수요 도출 및 R&D 기획에 반영할 의견 개진
 - * 산업계의 구체적인 차세대이차전지 기술 수요 도출 및 기술 분과에 개진
- (인력양성 및 국제협력) 산업계 관점의 인력양성 및 국제협력 수요 도출 및 의견 개진
 - * 산업계의 구체적인 인력양성 및 국제협력 수요를 도출하여 해당 분과에 개진
- '25년도 차세대이차전지 R&D 기획 방향 논의 (**참조 6. '25년도 차세대이차전지 R&D 기획** 방향 논의 회의록)
- 현 리튬금속전지 및 전고체전지 과제제안서 RFP상 수치들의 재조정 검토
- 현재 셀 단위 에너지밀도 목표치 달성 제성 제안형 과제 컨셉에서 벗어나 미래지향적인 소 재 연구 및 실용화를 고려한 연구과제를 추가로 기획하기 위한 의견 수렴
- 기존과제와의 차별성을 추구하기 위한 과제명과 과제의 컨셉 토론 진행

- 기술·산업 분과 진도표 (진행 완료)

구 분				연	구	기	간				-) - (O)
연구내용	1	2	3	4	5	6	7	8	9	10	진도(율)
기술·산업 분과	차세대 산업계	주요 7 동향 공 이차전의 의견의 영 방안				인력양성 요 도출					100 %

(표시요령) ----- 당초계획 — 진 도

- (목적) 용도맞춤형(EV, ESS, UAM)으로 리튬이온전지의 성능 한계(안전성, 소재자립, 효율성, 내구성)를 혁신하는 4대 차세대 이차전지 원천기술 개발
- (총사업비 / 기간) 334억원 / '24~ '29
- **(수행방식)** 지정공모
- (전문기관/수행주체) 한국연구재단 / 산·학·연 컨소시엄
- ('24년 예산) 차세대 이차전지 R&D 지원을 위한 연구비 3,500백만원 요구
 - 2과제×2,333백만원×9/12개월=3,500백만원
 - ※ 안전성 향상, 소재자립화를 위한 2개 과제를 우선 착수

착수시기	혁신목표	과제	주요내용	적용분야
12.413	안전성	120Wh/kg 수계아연전지	고안전성, 장수명, 초저가의 수계 아연전지 핵심 소재·요소 기술 개발	ESS
'24년	소재자립	220Wh/kg 나트륨이온전지	고성능 저가형 나트륨 이온 전지용 양극, 음극, 전해질, 분리막 등 소재 개발	ESS, EV

- 차세대전지 초격차 전략, 차세대 이차전지 기획 등 기획 경과 설명

- 사업 지원 근거
 - ('22.4월) 이차전지 분야 R&D 및 산업경쟁력 강화 논의(대통령인수위)
- ※ 국정과제75 초격차 전략기술 육성으로 과학기술 G5 도약(과기정통부)
 - o 경제성장과 안보 차원에서 주도권 확보가 필수적인 전략기술을 지정하여, 초격차 선도 및 대체불가 기술확보를 목표로 집중 육성
 - **('22.10월) 12대 국가전략기술**에 이차전지 선정(과기부, 10월), **국가첨단전략기술**로 이차전지 분야 기술 선정(산업부, 11월)
- 사업 추진 경과
 - ('22. 6월) '차세대전지 초격차 R&D전략 수립 기획위원회' 구성·운영 < 차세대전지 초격차 R&D 수립 기획위원회 >

총괄위원회

산학연 전문가 등(8인) (위원장: KIST 윤석진 원장)

이차전지

산학연 외부위원(13인) (분과장: KIST 정경윤 센터장)

수소연료전지

산학연 외부위원(10인) (분과장: 에너지공대 한종희 교수)

동위원소전지

산학연 외부위원(11인) (분과장: 원자력연 손광재 부장)

- o ('22.8월) 차세대 전지 분야 R&D 투자현황, 논문·특허 동향 및 산업현황 분석
- o ('22.9월) 총괄/분과별 중점추진 전략과 핵심기술 선정
- o ('22.10월) 차세대전지 초격차 R&D전략 초안 도출 및 전문가 의견 수렴
- o ('23.1월) 차세대 이차전지 상세 기획 사전회의 진행
- ('23.1월) **차세대 이차전지 상세 기획** 방향 설정
- ('23.2월) 차세대 이차전지 R&D 투자현황, 논문·특허 동향 및 산업현황 상세 분석 및 보고서 작성
- o ('23.4월) "차세대 전지 초격차 R&D 전략" 수립 및 차세대 이차전지, 수소연료전지, 동위원 소 전지의 각 분야에 대한 개발 계획 수립
- ('23.4월) "한계돌파형 4대 차세대이차전지 핵심 원천기술개발 사업" 기획 보고서

<차세대 이차전지 기획위원 명단>

(소재 자립화) 220Wh/kg 나트륨이온전지 기술 개발

1. 연구 필요성

- 이차전지 시장이 에너지 효율화 및 에너지 위기 극복 방안으로 부상하고 있는 흐름에 맞추어 향후 중/대형에 어디지저장 시스템에 적용 가능한 장수명/고에너지 전지 시스템 원천기술 개발 및 관련 기술 선점이 필요함
- o 현재 다양한 적용 분야에서 그 수요가 증가하는 리튬 이온 전지는 자원의 한정된 매장량으로 인한 급격한 가격 상승과 자원 고갈에 대한 우려가 커지고 있으며, 이에 기존의 리튬 이온 전지를 대체 할 수 있는 나트륨 이온 기반의 고성능/저가형 에너지 저장 시스템 개발이 절실함

2. 연구 목표

- o 기존 리튬 이온 전지를 사용하는 소형 모바일 기기부터 전기차, ESS와 같은 중대형 기기까지 다양한 응용 분야에서 적용 가능한 저가형 고성능 차세대 에너지 저장 시스템 구축
- o 나트륨 이온 전지용 고성능 양극 및 음극 소재의 설계 및 합성 기술, 나트륨 전지 맞춤형 전해질 및 분리막 소재 개발과 220 Wh/kg 수준의 셀 개발

3. 연구내용 및 범위

- o 고용량/고안정성/고전압 양극 소재
- 계면 안정화, 결정구조 안정화, 그리고 입자 미세구조 제어를 통한 나트륨 이온 기반 고성능 양극 소재 합성
- ㅇ 저전위/고용량/장수명 나트륨이온 음극 소재
- 결정구조, 형상, 입자크기, 그리고 미세공극 제어를 통한 고효율 탄소계 음극 소재 개발
- 음극 사전 나트륨화를 통한 풀 셀의 초기 쿨롱효율 개선
- ㅇ 고에너지밀도/고안정 나트륨 이온 전지를 위한 전해질 및 분리막 연구
- 초기효율 개선과 넓은 작동 전압 및 온도에서 신뢰성이 확보된 전해질 설계
- 성형 및 단락의 위험성이 있는 기존의 섬유형 분리막 대체 소재 개발
- 나트륨 이온 전지 전해질 젖음성이 우수한 미세 다공성 복합 분리막 제조

4. 최종산출물

- ㅇ 고전압에서도 구조적 안정성 유지가 가능한 고용량 양극 소재
- ㅇ 저전위/고용량/장수명 특성이 확보된 나트륨이온전지용 음극 소재
- ㅇ 고에너지밀도·고안정 나트륨 이온 전지에 적합한 전해질 및 분리막 소재
- o 220Wh/kg 수준에 달하는 나트튬이온전지 시작품 셀

5. 기대효과 및 파급효과

- o 현재 보편적으로 사용되는 리튬 이온 전지를 대체할 수 있는 가격 경쟁력을 갖춘 나트륨 기반 차세대 이차전지 원천기술 확보를 통해 신 성장 동력으로써 에너지 소재 분야 연구 활성화 및 성장 가속화에 기여
- o 고에너지밀도를 확보한 저가형 나트륨 이온 전지의 소재, 공정 개발 및 안정성 확보를 통해 ESS, 전기자동차와 같은 중대형 전지 시장 주도 및 중대형 전지의 글로벌 리더로 나아가기 위한 빠른 기술력 확보에 기여

- ㅇ 총 연구기간/예산 : 5년 / 11,400 백만원
- ㅇ 연도별 예산(백만원)

′24	′25	′26	′27	′28	소계
1,800	2,400	2,400	2,400	2,400	11,400

(안전성 향상) 120Wh/kg급 수계아연전지 기술

1. 연구 필요성

- 탄소중립사회 구현을 위한 재생에너지 연계 BESS 분야에 리튬이온전지가 채택되고 있으나, 최근 발생한 다수의 국내외 화재 및 폭발 사고로 유기전해질을 사용하는 리튬이차전지에 대한 안전·신뢰성이 저하된 실정으로,
 BESS의 안정적 공급 확대 및 지속적 활용을 위해선 리튬계 이차전지를 대체할 수 있는 고안전성 차세대 이차전지 초격차 기술 개발이 시급히 요구
- o 리튬이차전지 기술 개발에 필수적인 리튬, 니켈, 코발트 등의 핵심원료 및 소재들은 특정 지역 및 높은 해외 의존성으로 인해 리튬이차전지 산업이 증대될수록 공급망 문제가 더욱 가속화되는 문제점이 발생하게 되며 이를 타개하기 위해, 저가화가 가능하고 안전 문제가 원천적으로 답보된 수계 전해질을 활용한 탈 리튬계 차세대 이차전지 기술 개발 필요

2. 연구 목표

- o 최근 ESS 화재 안전성 문제 뿐만 아니라, 자원적 한계를 나타내는 리튬 기반 이차전지 기술을 탈피하고, 대안이 될 수 있는 고안전성, 장수명, 고율속, 초저가 특성의 ESS向 수계 아연전지 핵심 소재·요소 기술 개발
- o 개발 소재·요소 기술이 적용되고 다양한 운전 조건하에서 수명 및 내구 성능 구현이 가능한 수계아연 전지 시스템 확보 및 이를 통한 수계전해질 기반의 차세대 이차전지 ESS 적합성·기술 상용화 가능성 제고

3. 연구내용 및 범위

- ㅇ 양극 열화 및 부반응 생성물 제어 기술
- 충방전 중 양극재 용출 및 열화 현상 억제 기술
- Zn complex 등 반응 생성물 형성 제어 기술
- o Zn 음극 부식, 덴드라이트 성장 억제 및 수소 발생 억제 기술
- 약산성 전해질 조건 하에서 Zn의 화학적 부식 및 수소 발생 억제
- 충전시 Zn 음극의 덴드라이트 균일 성장 유도 및 가역성 개선
- ㅇ 고전압 안정성 전해질 및 첨가제 기술
- 수계 전해질의 낮은 전압 안정창 극복 및 전기화학적 가역성 개선
- Zn 음극 덴드라이트 억제 및 양극재 용출 완화 전해질 설계
- ㅇ 고에너지밀도 및 장수명 셀 기술 확보
- 고에너지밀도 셀 구현을 위한 고용량 전극 및 셀 설계
- 고에너지밀도 수계아연 전지 장수명 구현 및 대용량 셀 제작 기술

4. 최종산출물

- ㅇ 수계 전해질 기반 신규 이차전지 시스템 및 작동 메커니즘 제시
- ㅇ 수계 전해질 기반 이차전지 원천 소재 및 핵심 요소 기술 (국내외 우수 논문 및 핵심 원천 특허)
- o > 120Wh/kg 수계 이차전지 셀 (5Ah 이상) 시작품
- ㅇ 수계 아연전지 기반 재생에너지 연계 ESS 시스템 구축 모델 및 탄소 중립 기여 방안 제시

5. 기대효과 및 파급효과

- o 초격차 기술 확보를 통해 탈 리튬계 차세대 이차전지 기술 주도권 확보 및 심화되고 있는 차세대 이차전지 소재 공급망문제대응·자립화·다각화에 기여
- o 탈 리튬계 차세대 이차전지 기술 분야 원천 기술 확보를 통해 향후 재생에너지와 연계되어 폭발적인 증가세가 예상되는 대용량 BESS 분야 기술 조기 선점 및 범국가적 탄소중립화 노력에 기여

- o 총 연구기간/예산 : 5년 / 11,400 백만원
- ㅇ 연도별 예산(백만원)

′24	′25	′26	′27	′28	소계
1,800	2,400	2,400	2,400	2,400	11,400

(효율 향상) 1000Wh/L급 리튬금속음극전지 기술

1. 연구 필요성

- o 리튬 금속 음극은 매우 높은 이론 용량과 낮은 밀도, 낮은 환원전위를 보유하여 현재 상용화된 리튬이온 전지보다 높은 에너지 밀도를 가짐
- o 리튬 금속의 높은 반응성, 불안정한 SEI 층 생성, 리튬 수지상 성장 및 불활성 리튬(dead lithium) 형성, 전지 구동에 따른 부피 변화 등으로부터 기인하는 낮은 쿨롱 효율과 충방전 수명, 화재나 폭발 등의 안전성 문제를 개선하기 위한 연구가 필요함

2. 연구 목표

- o 전해질 첨가제, 인공적인 SEI 층, 전극 구조체 변화 등을 통해 리튬 금속 음극의 표면을 안정화함으로써 리튬 금속 전지에서 높은 가역성과 안정성 확보
- o 실시간 이미징 기술을 통해 리튬 금속 음극 표면에서의 수지상 성장 메커니즘을 분석하여 실제 전지 구동 환경에서 리튬 수지상 성장 및 불활성 리튬(dead lithium) 형성을 억제하는 기술 개발

3. 연구내용 및 범위

- o 리튬 금속 음극을 적용하여 높은 에너지 밀도(1000Wh/L)를 갖는 차세대 리튬 이차전지 개발
- ㅇ 상용 리튬 이온 전지로의 도입을 위해 분리막과 양립 가능한 리튬 금속 음극 개질 기술 개발
- o 전해질 첨가제 도입 및 인공 SEI 층 코팅을 통한 리튬 금속 음극 표면 안정화
- 리튬 금속 표면에 안정적인 SEI 층을 형성하여 리튬의 수지상 성장을 억제
- ㅇ 전극 구조체 변화를 통한 수지상 리튬 성장 억제 및 리튬 음극 표면 안정화 기술 개발
- o X-ray 기반의 실시간 전극 이미징 기술을 이용한 전지 열화 원인 규명 및 해결 방안 제시

4. 최종산출물

- o 양극에 하이-니켈 소재를, 음극에 리튬 금속 음극을 적용한 높은 에너지 밀도(1000Wh/L)를 갖는 차세대 리튬 금속 전지(High-Ni Transition Metal Oxide-Li Metal, NTL)
- o 리튬 금속 음극을 적용한 초경량 및 고용량 리튬-황 전지 시스템 (Lithium metal-Sulfur Battery, LSB)
- ㅇ 높은 가역성과 안정성을 갖는 리튬 음극 표면 개질 기술
- ㅇ 리튬 금속 및 차세대 전지용 금속 전극을 효과적으로 분석할 수 있는 실시간 이미징 기술 및 장비

5. 기대효과 및 파급효과

- o 리튬 금속 음극 전지 기술 선제적 확보를 통해 흑연 등 기존 음극 원재료의 중국 의존도를 줄이고 국산 배터리의 세계 시장 점유율 확보 및 국가경쟁력 제고에 기여
- o 초경량 및 고에너지밀도 리튬 금속 음극 적용을 통해 전기차의 1회 주행거리를 향상시켜 내연기관차 대비 경쟁력 확보를 통한 전기차 보급 대중화에 따른 온실 가스 배출 저감 및 국제 환경 보호에 기여

- o 총 연구기간/예산 : 5년 / 11,400 백만원
- ㅇ 연도별 예산(백만원)

′25	′26	'27	′28	'29	소계
1,800	2,400	2,400	2,400	2,400	11,400

(내구성 향상) 800Wh/L 전고체전지 기술 개발

1. 연구 필요성

- o 기존 리튬이온전지의 가연성 유기 전해질을 대치하여 안전성을 확보할수 있고 고용량 혼합 음극소재, 리튬금속 및 고전압 양극 소재 사용이 가능하여 고에너지 밀도 전지 구현 가능
- o 전고체 전지의 성능 향상 및 상용화를 위해 고이온전도성 고체전해질 개발이 필요하고 넓은 전위안전 범위 및 고용량, 대면적화, 저가격, 고수명등 실용화 지표를 향상 필요

2. 연구 목표

- ㅇ 신계념 고체전해질 소재 개발 및 고에너지밀도, 고안정성 전고체 전지 기술 개발
- (세부 목표 1) 이온전도도 향상, 저비용, 대량생산 기술 및 대기안정화 기술 확보
- (세부 목표 2) 전사/직접 코팅 방식 박막 멤브레인 기술 확보
- (세부 목표 3) 계면 제어 전극용 후막 설계 및 제조 기술 확보
- (세부 목표 4) 고에너지밀도 전고체 전지용 전극/멤브레인/음극 적층화 기술 확보

3. 연구내용 및 범위

- ㅇ 고체전해질 소재 및 멤브레인 제조 기술 개발
- 습식 밀링에 의한 저온소결형 고체전해질 및 대기 안정화 기술 확보
- 고이온전도성 연속 생산 가능한 멤브레인 제조 기술 개발
- o 양극 및 음극 복합 전극/극판 제조 기술 개발
- 계면 저항 극복 가능 극판 설계 ,후막화, 화학적 안정성 확보 및 대면적 제조 공정 기술 최적화
- o 고에너지밀도 전고체 전지 셀 설계/제조 기술 개
- 소재, 극판, 계면에서의 열화 이슈 극복하여 고에너지밀도의 전고체 전지와 장수명 확보 동시 구현

4. 최종산출물

- o Glove box-free 전고체 전지 셀 조립 공정 기술 확보
- o 롤투롤 방식의 전극/멤브레인 계면 저항 극복 및 셀 가압 공정 기술 확보
- ㅇ 고에너지밀도 구현을 위한 대면적화, 적화 기술 및 장수명 구축

5. 기대효과 및 파급효과

- o 고안전성 전극 및 전해질 개발을 통한 이차전지 시스템 안전석 확보를 통한 차세대 이차전지 초격차 기술 확보
- o EV 용 차세대 전고체 전지의 탑재로 인한 전기자동차 시대의 도래를 앞당겨 화석연료의 사용 감축 및 온실 가스 감축에 기여

- ㅇ 총 연구기간/예산 : 5년 / 11,400 백만원
- ㅇ 연도별 예산(백만원)

′25	′26	'27	′28	'29	소계		
1,800	1,800 2,400		2,400	2,400	11,400		

차세대 이차전지 혁신 정책 센터

1. 연구 필요성

- o 차세대 이차전지 혁신 원천 기술 개발 사업은 이차전지 분야 압도적 1위 달성을 위한 초격차 기술 확보 및 지속적인 R&D 생태계 조성 위해 추진고자 하는 사업임
- o 사업에 대한 효과적인 수요 기반 연구 목표 및 내용 대응, 조속한 성과 활용, 원할한 국제 협력, 지속적 정책 지원 등의 산학연 연구자 및 민관 소통 활성화를 위한 전문가 그룹으로 구성되어 전담기관 및 주관 부처와 원할한 연계를 위한 브릿지 역할의 기관이 필요함

2. 연구 목표

- o 사업의 원할한 수행을 위한 기획 총괄, 학술 및 정보 교류, 동향 분석 등의 종합적인 사업 운영·관리 효율 제고를 위한 전담기관 및 주관 부쳐 연계 강화를 위한 기반 구축
- o 대내외 환경, 산업체 수요, 국제 협력 의제, 성과 교류 및 포럼 개최 등 이차전지 분야 정보를 수집·분석하여 연구자 및 산업체 맞춤형 종합 연구 지원 시스템 구축

3. 연구내용 및 범위

- ㅇ 차세대 이차전지 연구자 성과 및 인프라 등의 연구 정보 기능을 종합 정보 플랫폼 인프라 구축
- 국내외 차세대 이차전지 유관 정보(정책, 동향, 수요 등) 수집·관리·체계화 시스템 개발
- ㅇ 연차별, 단계별 정기 차세대 이차전지 연구 성과 교류회 및 국내외 연구 정보 교류 포럼 개최
- ㅇ 글로벌 협력을 위한 권역별 선도 기술 조사 및 협력 의제 발굴
- 정보공유, 공동연구, 사업기획 등 국내외 얼라이언스의 신속·원활한 추진을 위한 온라인 협력플랫폼 개발
- ㅇ 지역별 이차전지 산업체 수요 조사 및 공동 연구 플랫폼 구축
- ㅇ 차세대 이차전지 학술 및 교육 프로그램 구축

4. 최종산출물

- ㅇ 차세대 이차전지 조기 상용화를 위한 성과 활용 온라인 및 오프라인 플랫폼
- ㅇ 차세대 이차전지 연구 개발 동향에 대한 국내외 빅데이터 구축
- ㅇ 차세대 이차전지 특화형 국제 학술 포럼 및 원천 기술 성과 공개형 교류회
- ㅇ 고급 연구 인력 양성을 위한 기초 실습 융합형 교육 프로그램

5. 기대효과 및 파급효과

- o 차세대 이차전지 핵심분야의 수요발굴, 사업기획, 연구개발, 성과 관리, 후속연계의 전과정에 대한 종합 정보를 확보·관리하여 국가연구개발사업의 효율성 제고에 기여
- o 차세대 이차전지에 대한 기초·원천기술 개발 및 성과의 원활한 확산에 대한 체계적 데이터베이스 확보를 통해 원천기술 확보에 대한 선제적 대응 및 국제경쟁력 제고에 기여

- o 총 연구기간/예산 : 6년 / 4,350백만원
- ㅇ 연도별 예산(백만원)

′24	′25	'26	'27	′28	'29	소계
600	750	750	750	750	750	4,350

3. 국제협력 분과

- **민·관 협의체를 중심**으로 차세대이차전지 분야의 주요 국내외 연구기관과 교류를 수행하는 **국제협력** 채널 구축
- 미국 등 주요국 학연 차세대이차전지 연구기관과의 공동연구 수요조사, 정기 교류 실시로 선도 기술 확보 및 기술 트렌드 공유
- 글로벌 시장에서 중요성이 증가되고 성장기대치 및 미래수요기대치가 높은 차세대 이차전지 연구의 국제협력을 위한 전략 수립
- (인력교류) 이차전지 관련 국제학회, 한인과학자협회(EKC·UKC·CKC 등) 등을 통해 국제 공동연구 수요 도출, 연구자 간 네트워크 활성화
- (공동연구) 해외연구기관 네트워크를 기반으로 차세대이차전지 관련 연구주제 도출 및 공동연 구과제 상세기획 추진
 - * 차세대 이차전지 전문인력양성(과학기술혁신인재양성 내역사업) 내 국제 공동연구 과제('24년 신규)로 추진
 - * 차세대 이차전지 국제협력 사업 추진(안) 작성 (참조 5)
- 국제협력 분과위원 국제협력 연구 후보 요소 기술 각자 제출 후 적정성, 신규성 및 필요성을 고려하여 **우선순위 도출**
- '25년도 국제협력 과제를 통한 국제협력 강화방안 제시 (**참조 6. '25년도 차세대이차전지** R&D 기획 방향 논의 회의록)
- 추 후, 미국 외 유럽의 국가들을 대상으로 기관컨소시엄 대 기관컨소시엄 규모 국제공동연 구를 추진하는 방안 제시
- 국제공동과제의 지원 및 운영을 위해서 연구기관간의 협약 체결 등 과제기획 사전 접촉 및 기록을 준비하기 위한 방안 구상
- 국제공동과제의 운영비는 각 국가의 매칭 펀드로 지원하도록 하는 방안 제시
- 국제협력 분과 진도표 (현재 진행 완료)

구 분	연 구 기 간								-1-(A)		
연구내용	1	2	3	4	5	6	7	8	9	10	진도(율)
국제협력 분야	미국 : 공동	등 주요 ⁵ 등연구 수		이차전지 정기 교투 		력 사업	*해외연구 로 차세 로 작세 추진	^구 기관 네 대이차전 공동연	트위크를 지 관련 구과제	기반으 연구주제 상세기획	100 %

(표시요령) ----- 당초계획 — 진 도

참조 5: 차세대 이차전지 국제협력 사업 추진(안)

- (목적) 글로벌 시장에서 중요성이 증가되고 성장기대치와 미래수요가 높은 이차전지 국제협력을 통한 경쟁력 강화를 위해 선제적 R&D 지원 필요
 - 세계 최고의 기술력을 보유한 미국의 R&D 우수기관과 국내기관과의 국제 공동연구 개발 추진
- (총사업비 / 기간) 175억원 / '24~ '28
- **(수행방식)** 공모
- ('24년 예산) 차세대전지 국제공동연구를 위한 사업비 3,500백만원 요구
 - 4개 과제 x 1,200백만원 × 9/12개월 = 3,500백만원 수
- 그 외 논의사항
- 미국과의 국제협력 연구 후보 요소 기술 논의 (리튬 메탈, Anode-less, 리튬-황, 소듐이온전지 등 차세대 전지 범위 결정)
- 국제 공동 연구 개발 추진 주요기관 (비영리) 및 과제 프로세스 논의
- 국제공동 연구 추진 범위 및 주요 이슈 논의 (IP, 예산 범위, 예산 규모 및 참여인력 교류 등)
- 기업 참여 여부 논의

4. 총괄위원회 개최

- **민·관 협의체 위원장으로 구성된 총괄 위원회를 개최하여** 차세대이차전지 분야 미래기술 수요 발굴, R&D 고도화 성과 교류 및 협력안 토론을 진행함
- 분과위원장들 간 주요 운영 결과 교류 및 구체적 협력 사항 조율 (**참조 6**. '25년도 차세대 이차전지 R&D 기획 방향 논의 내용 요약 및 회의록)

[사진] 2023. 09. 26. 차세대이차전지 민관연구협의체 총괄위원회 회의

[사진] 2024. 03. 13. 차세대이차전지 민관연구협의체 총괄위원회 회의

참조 6: '25년도 차세대이차전지 R&D 기획 방향 논의 결과 요약 및 회의록)

□ 기술·산업 분과

- '25년도 차세대이차전지 R&D 기획 방향 논의
 - 리튬금속, 전고체전지 관련 타 사업*과의 차별성 확보방안
 - * 기후변화/단계도약, 혁신도전프로젝트, 산업부 예타 사업 등과의 비교

<논의 사항 요약>

- O 리튬금속전지 과제의 RFP상 수치를 조절하고 기존의 과제와의 차이점이 들어나도록 과제의 목표 및 방향을 수정해야할 필요가 있음.
- 전고체전지 과제의 RFP는 수정하되 기존의 과제와 차별성을 두기위해 저가압형, 대기안정형, 황화물 고체전해질막, 셀적용/검증 등의 keyword를 이용하여 과제를 서술하고, 기술적 난이도를 잘 표현하는 과제명과 내용을 기획하는 것이 필요함.
- 예시로 든 '무음극 전지'와 같은 용어를 개발하여 과제를 기획해야 할 것.

□ 인력양성 분과

- '24년도 신규 차세대이차전지 전문인력 양성 사업 추진 방향 논의
 - 기업 참여 유도·취업 연계를 위한 계약정원제 추진 방안 구체화 ※ 계약정원제 개요 및 계약학과와의 비교
 - 인력양성센터(2개)* 간 연계 및 유기적 협력 방안 제시
 - * (1) 혁신 원천 소재 설계/개발, (2) 혁신 셀 설계/고도화
 - ※ 차세대이차전지 전문인력 양성 사업체계 구상

<논의 사항 요약>

- 기업 참여 유도 및 취업 연계를 위한 계약정원제 추진 방안의 세부 계획 결정 (학과개설 준비, 학생 선발, 학과 운영(필요경비) 등)
- 인력양성센터(2개) 간 연계 및 유기적 협력 방안 제시

(공동 교육 프로그램 및 프로젝트, 성과확산 및 환류 체계 구축을 위한 콘트롤 타워 필요 여부 등)

□ 국제협력 분과

- '24년도 국제협력 과제를 통한 국제협력 강화방안
 - ※ 원천기술국제협력개발사업 이차전지 국제공동연구

<논의 사항 요약>

- 이차전지 국제공동연구 사업의 선정 평가 완료 후 국제협력 강화를 위한 효율적 추진 방안 논의
- 한미 차세대이차전지 협력 강화 방안, 미국 이외의 타 국가로의 확대 방안 구상
 - 이차전지분야 국제공동연구가 가능한 상대국: 독일, 일본, 그리고 중국
 - 중국의 경우 국가안보 문제로 국제공동연구를 진행하기에 고려해야할 민감한 사안들이 많음.
 - 독일의 경우 프라운호퍼 얼라이언스를 설립하고 유럽내의 국가단위 국제공동연구를 수행중 임.
 - 프라운 호퍼 얼라이언스의 경우와 같이 국제공동연구 과제 기획 이전에 연구공동체간 사전 접촉을 통해 연구주제 도출하는 것을 논의.
 - 현재 미국과의 실질적 국제공동연구 및 국제협력 내용의 정립 필요 논의
 - 향 후, 국제공동연구의 경우 연구자대 연구자가 아닌 기관컨소시엄대 기관컨소시엄 수준의 공동연구를 기획하는 것을 논의.
 - 국제공동과제의 장기적인 협업지속을 위해 각자 국가에서의 매칭펀드를 이용하는 방안을 구상.

<회의록>

차세대이차전지 민관협의체 총괄위원회 회의록

1. 회의 개요

- (목적) 차세대이차전지 분야 미래기술 수요 발굴과 R&D 고도화 및 성과 교류·협력 등을 위한 '차세대이차전지 민·관 협의체' 운영
- (일시/장소) '24.3.13(수) 10:30 /스페이스쉐어 서울역센터(에머랄드룸)
- (참석자) 원회 위원총괄위장 및 위원, 과기정통부, 한국연구재단 등
- (주요내용) 각 분과별(기술·산업, 인력양성, 국제협력) 주요사항 발표·논의

2. 주요 안건 회의록

- □ 기술·산업 분과
- '25년도 차세대이차전지 R&D 기획 방향 논의
 - 리튬금속, 전고체전지 관련 타 사업*과의 차별성 확보방안
 - * 기후변화/단계도약, 혁신도전프로젝트, 산업부 예타 사업 등과의 비교

<논의 사항>

- ◆ 리튬금속전지 과제의 RFP 유지
 - (위원장) 기존에 이미 존재하던 과제와 어떤 차이가 나는 기술을 개발하기 위한 과제인지 과제명을 보고는 알 수가 없음.
 - 기존에 존재하던 과제와 차별성을 두기 위해서는 금속 음극을 사용은 하지만 기술적 차별성이 있는 '무음극 전고체전지'와 같은으로 방향으로 진행하는 경우를 고려해봐야 함.
 - (위원1) '무음극 전고체전지'와 같은 기술은 기존의 리튬금속전지와 기술적 차별성이 명시되긴 하나 기술의 난이도가 너무 높음.
 - (위원2) 너무 높은 기술의 난이도는 과제의 목표 달성 가능성을 낮추고, 지원자들의 지원을 꺼리게 하는 우려가 있음.
 - (위원3) 과제의 RFP는 유지하는 것이 좋은지 고려해봐야 함. 제시된 효율 향상 및 덴드라이트 억제를 통한 안정성 향상이라는 연구목적과 에너지밀도 1000

Wh/L 급 셀개발 이라는 연구목적이 연구기술적 목적과 산업기술적 목적를 모두 만족시켜야 하는 어려운 내용임.

- (위원4) 현 리튬금속전지의 RFP 상의 수치는 조정이 필요해 보임.
- (위원3) 산업부의 과제는 과제 제안시 예타보고서에서 제시한 수준에서 변화하여 나오는 경우가 있음. 다양한 관점에서 지적사항이 나올 수 있음을 준비해야함.

◆ 전고체전지 과제의 RFP는 수정

(저가압형, 대기안정형, 황화물 고체전해질막, 셀적용/검증 등의 keyword 사용 여부)

- (위원5) 과제명에서 제시하는 800Wh/L 는 사실 효용성이 없음. 과제를 지원하는 지원자가 더 높은 수치를 제시하는 경우도 존재함. 특히나 전고체 전지의 경우 전지의 스펙으로 무리하게 목표치를 제시하는 경우가 많음
- (위원장) 전고체 전지의 에너지밀도를 제안하고 셀 개발 목적으로 하는 과제는 이제 지양하는 것이 필요하다는 생각임. 연구중심의 목적에 맞는 원천적이고 미래지향적인 기술 개발을 위한 과제의 제안이 더 필요함.
- 현 과제와 과거 과제들의 차이점은 무엇인가?
- (위원3) 과거의 경우들을 보면 2017년 기후변화사업의 경우 충전소용 전고체전 지를 목표로 기존의 리튬이온전지의 전해질을 고체로 대신하여 전지의 안정성을 높이기 위한 전고체 전해질 소재에 대한 연구가 진행됨. 이후로도 쭉 전고체 전 해질 자체의 성능을 향상시키고 열안정성이 높은 소재를 개발하는 것이 목적이었 음
- 현 진행중인 '단계도약' 과제의 경우 전기자동차를 응용처로 생각하고, 전고체전 지의 에너지밀도를 향상시키는 목적으로 진행되어 왔음.
- 추후 '한계돌파' 사업에서는 드라이룸 수준에서 다룰 수 있는 대기안정형 고체전 해질 및 가압 없이 작동할 수 있는 전고체전지 기술 개발 등을 고려할 수 있음.
- (위원장) 소재 개발의 경우 이온 전도도 향상에 관한 연구는 거의 한계에 다달아 있음. 소재의 개발도 중요하지만, 실질적인 전지의 구동에 도움이 되는 연구 주제 인 계면반응에 대한 연구가 추가로 진행이 되면 좋을 듯 함. 현재의 고체전해질들의 고질적인 문제를 해결하기 위해 미량의 액체전해질 소재를 개발하여 현 문제를 해결하는 연구도 제시되면 좋을 듯함.
- 계면free 전고체전지 등 기존의 소재 연구와 다르게 가는 것이 추후 연구 기획자에게도 유리하지 않은지? 앞으로 과제 계획에 필요함.
- (위원3) 국과심 등 사업을 평가하는 자리에서 일부 위원들은 고체전해질과 액체

전해질의 동시 사용을 매우 꺼려하는 경향이 있음. 액체가 개입되는 순간 전고체 전지가 아니다라는 의견을 주시는 분들이 있음. 따라서, 해당 기술에 대한 중요성 을 인식시키는, 사전 작업이 필요함.

- (위원장) 액체전해질을 고체전해질과 섞어 사용하는 것을 가지고 기술적 폄하를 하면 안됨. 과제명에 액체를 사용한다고 해서 전고체전지 과제의 색깔이 사라지 는 것은 아님. 과학적 접근법을 통해 연구를 수행하지만, 상업화의 미래까지 고려 하는 연구를 해야하는 것 아닌가 생각함.
- (위원6) 이차전지 기업의 시각에서 고체전해질에 액제전해질을 사용하는 것이 전혀 안 되는 것은 아님.
- (위원장) 그렇다면 극미량의 액체전해질을 사용하면서 고체전해질의 특성을 더욱 향상 시킬 수 있는 연구주제도 고려해 볼만 함.
- 그 밖에 전고체 전지 과제의 차별성을 둘 방안은 무엇인가?
- (위원1) 과거의 전고체 전지 과제와 차별성을 둔 과제를 기획하고 과제명을 짓기 위해서는 과거 산업부의 과제리스트로 확인해 볼 필요가 있음. 예시로, 전고체 전해질 중 황화물 고체전해질은 이미 과거에 산업부 과제를 통해 많은 평가가 이루 어졌으므로 황화물 고체전해질 개발 관련 과제기획은 매우 까다로움.
- (위원2) 리튬메탈전지의 경우 과거 산업부의 리튬메탈 보호막 과제는 존재 하였으나 리튬메탈전지 과제는 없었음. 전고체 전해질의 경우도 과거 전고체 전해질 과제때는 존재하지 않았던 컨셉과 적용범위를 설정하여 '한계도전 프로젝트'와 같은 과제로 수행 할 수 있는지 고민해봐야 함.
- (위원1) 황화물계 전고체 전해질은 이미 소재 자체 개발의 한계가 많이 보임. 리튬금속전지 과제의 경우 차별성을 찾을 수 있을 것 같음
- (위원장) 일반적인 사람들의 경우 소재나 전지명을 잘 알지만 세부적인 기술의 난이도 차이를 모름. 기술적 난이도를 잘 표현하는 과제명과 내용을 기획하는 것 이 필요함 예시로 든 '무음극 전지'와 같은 용어를 개발하여 과제를 기획해야 할 것임.
- (위원2, 4) 리튬금속과제의 용어 및 목표수치 정리가 필요해 보임.

□ 인력양성 분과

- '24년도 신규 차세대이차전지 전문인력 양성 사업 추진 방향 논의
 - 기업 참여 유도·취업 연계를 위한 계약정원제 추진 방안 ※ 계약정원제 개요 및 계약학과와의 비교
 - 인력양성센터(2개)* 간 연계 및 유기적 협력 방안 * (1) 혁신 원천 소재 설계/개발, (2) 혁신 셀 설계/고도화 ※ 차세대이차전지 전문인력 양성 사업체계

<논의 사항>

- ◆ 기업 참여 유도 및 취업 연계를 위한 계약정원제 추진 방안 (학과개설 준비, 학생 선발, 학과 운영(필요경비) 등)
- ◆ 인력양성센터(2개) 간 연계 및 유기적 협력 방안
 (공동 교육 프로그램 및 프로젝트, 성과확산 및 환류 체계 구축을 위한 콘트롤 타워 필요 여부 등)
 - (위원7) 올해 7월에 시작하는 인력양성 사업을 상세 기획중임. 기업의 참여를 유도하고 대학원 지원 학생들이 지원하는 계약정원제의 추진방안에 대해 논의하고 자 함
 - 현재 학과개설을 준비중이여, 계약정원제의 경우 일반학과의 20% 이내의 정원을 추가로 증설해주며, 계약학과와 마찬가지로 산업체가 계약 학생의 인건비 50%를 부담해야함. 이 경우 기업체가 학생인건비를 지원할 것인지 의견이 필요함.
 - (위원5) 현재의 계약정원제운영시 산업체의 메리트와 지원의향의 확인이 필요함
 - (위원2) 산업체에서 먼저 계약학과의 경우는 지원의사가 있는 것으로 알고 있음. 산업체 쪽에서 지원학생의 수와 지원금의 규모를 정함.
 - (위원장) 계약학과의 경우 단일 회사의 지원이 이루어져야하는 시스템임. 일반학과 하나를 여러 회사가 지원하기는 현실적으로 힘듦. 아니라면 배터리공학과 같은 특수 학과를 만들고 여러 배터리 회사가 지원을 해야함. 1개의 회사가 전체학생인건비의 50%를 지원하는 것은 회사의 부담이 너무 크지 않은지 고민 해볼필요가 있음
 - (위원2) 반도체 분야의 경우 계약학과에 1개의 회사만 들어옴. 계약정원제의 경우 지원가능 지역과 대학 고려시, 지방에 있는 대학의 경우 지방에 있는 지방거점 대학과 지방의 중견기업이 존재하므로 수도권 몰림 현상의 완화가 가능.
 - 그러나 차세대 이차전지는 지방에 중소기업 등이 많지 않으므로 실질적 계약정 원제의 실행이 기대하기 어려울 것임, 바이오분야의 경우 계약정원제의 실행을

과제 RFP에 넣어 실행하는 방안을 구상하고 있으나 기업의 이점이 잘 보이지 않음.

- (위원5) 기업의 이점 이외에 현 계약정원제 실행계획의 기간산정에도 문제가 있음. 현재 3월이고 예산을 받게 된 후 7월에 개시가 되어야 하는 사업인데, RFP 공고가 난 후 회사가 계약정원제를 준비하여 사업에 참여하기에 충분한 시간인지우려됨.
- (위원3) 이 사업의 경우 회사가 과제제안에 동의하기만 하면 바로 수행할 수 있는 사업인지?
- (위원6) 회사의 경우 기간을 맞추는 것은 가능해보임.
- (위원장) 일반적인 학교의 커리큘럼은 4월에 학생들의 원서접수를 받고 인원수를 추린 후 9월에 학기를 시작함. 올해 7월에 사업을 시작하면 계약정원제 지원 인원 파악 및 입학 가능인원을 산정해야 하는데, 학기 시작 시간을 맞출 수가 없음.
- (위원2) 이러한 상황이라면 신입생을 받기보다 기존의 정원을 계약정원제 정원으로 지원을 받아 정원을 채우는 방법을 고려해봐야 할 듯함.
- (위원7) 사무관님의 말씀대로 올해는 기존 정원에 있는 학생들 중 계약학과제 수 혜자 학생을 뽑는 것에 동의하며, 본격적인 계약정원제 운영은 내년부터 실시할 계획.
- (위원6) 기업의 입장에서는 입사자들의 수를 사업의 사이클에 맞게 변동을 주며 조절함. 계약학과는 일정 수의 졸업생을 매해 무조건 기업에서 뽑아야하는 부담 감이 있음. 만일 기존 계약학과를 유지하면서 계약정원제를 추가로 시행하여 정원의 증가가 발생한다면 기업으로써는 더욱 큰 부담이 될 듯 함.
- (위원장) 산업부 계약학과의 경우 선발인원의 석사 및 박사 구성 인원을 정해놓았음. 본 사업의 경우 석사 및 박사의 비율을 어떻게 구성할 것인지에 대한 논의도 필요함.
- (위원7) 사업부 계약학과의 운영 예시의 경우 5년간 총 115명중 90명은 석사, 25명은 박사로 지원을 받음.
- (위원장) 산업부에서는 산업체 수요 기반의 인력양성을 요구하였으며 석사의 구성비율이 훨씬 높음, 과기정통부의 계약정원제의 경우 졸업후 계약한 기업으로 무조건 가야함. 이러한 경우 지방에서 지방기업과 연계한 계약정원제 운영이 가능할 것인가?
- (위원6) 한 학교에서 하나의 기업과 계약을 맺는 양상이나, 여러 기업지원을 가능하게 해주고, 인력을 박사급 인력이 회사에 지원가능하게 해주면 좋을 듯 함.
- (위원장) 계약학과의 경우 지원율이 높음

- (위원2) 계약정원제 사업의 RFP에서 취업 기업을 제약을 하지않으면 괜찮을 것이며, 여러기업이 지원하여 학생 인건비를 지원하게 하는 방향으로 운영되어야할 것임.
- (위원4) 계약정원제의 경우 학과의 일부정원만이 기업으로 가는 식이라 자유도가 계약학과보다 높을 것임.
- (위원7) 대학원의 지도교수가 학생에게 계약정원제로의 선택을 제안해 볼 수도 있음.
- (위원장) 기존 연구중심 대학은 계약학과가 있으며, 계약정원제로의 변환 시행하기가 힘들 것임. 그러므로 계약정원제는 박사급 고급인력 양성을 목적으로 운영되는 것은 어떨까 함. 지방에 소재하는 대학은 인력양성 사업을 통해 산업인력을 양성 할 것인지 또는 고급 박사급 인력을 양성할 것 인지 결정해야 할 것임.
- (위원4) 계약정원제의 경우 계약학과의 부담 완화용으로 동시 운영할 수 있으며, 지방 소재 대학의 경우 더 적합함.
- (위원5) 계약학과의 경우 학위과정 중 습득한 지식을 바로 활용가능한 석사인원을 주로 배출함. 그러나 차세대 기술을 연마한 경우 기업에서 긴박한 연구사안이 아니므로 인력을 바로 뽑지 않음. 연구중심 대학에서 계약정원제를 이용해 고급연구인력 양성 방안으로 사용하는 것은 어떨지 고민해봐야 함.
- (위원장) 토론의 내용처럼 계약학과와 계약정원제는 지방소재 대학에 고급인력 공급 방안과 더불어 이차전지분야에도 고급 인력을 배출할 수 있는 방안으로 고 민되어지면 좋을 듯 함.

□ 국제협력 분과

'24년도 국제협력 과제를 통한 국제협력 강화방안※ 원천기술국제협력개발사업 이차전지 국제공동연구

<논의 사항>

- ◆ 이차전지 국제공동연구 사업의 선정 평가 완료 후 국제협력 강화를 위한 효율적 추진 방안
- ◈ 한미 차세대이차전지 협력 강화 방안, 미국 이외의 타 국가로의 확대 방안 등
 - (위원1) 현재 국제공동연구과제에 대한 RFP가 공시가 되고 있으며, 연구방안등에 대한 이슈들이 적립되고 있음. 이에 따라서 국제협력 상대국가 및 국제협력사업 강화 방안에 대한 논의가 필요함.
 - (위원2) 현재 미국 이외에 고려중인 다른 국가들은 어디가 있는가?
 - (위원3) 이차전지분야 국제공동연구가 가능한 상대국으로는 독일, 일본, 그리고 중국이 있으나 중국의 경우 국가안보 문제로 민감한 사안들이 많음.
 - (위원1) 독일의 경우 프라운호퍼 얼라이언스를 설립하고 유럽내의 국가단위 국제 공동연구를 수행중임.
 - 현재 미국과의 실질적 국제공동연구 및 국제협력 내용을 어떻게 정립해야할지 논의가 필요함.
 - (위원2) 민관협의체의 운영에 국제협력 사안을 추가하여 실질 운영해야함.
 - (위원3) 내년에는 미국 외 다른 어느 국가와 국제공동연구를 진행할지 추가사항 논의가 필요함.
 - (위원장) 내년엔 미국과 유럽을 위주로 진행을 해보고 일본으로 확장을 해보는 것은 어떨까 함. 홍콩과 싱가폴의 연구력도 높은데 국제공동연구 대상으로 어떠한지?
 - (위원3) 홍콩과 싱가폴 모두 중국의 영향을 크게 받으므로 민감한 사항이 될 수 있음.
 - (위원4) 한미간 국제공동연구의 경우 사업규모가 큰 편임. 예산상황 상, 내년 국 제공동연구 진행을 위해서는 기관대 기관 수준의 공동연구 기획 및 상호 양해 각 서등 사전작업을 진행한 경우에만 추가 국제공동연구 과제를 진행 할 수 있을 것으로 보임.
 - 타국의 국제공동연구 사례의 경우 연구자대 연구자가 아닌 기관컨소시엄대 기관

컨소시엄 수준의 공동연구를 원하는 경우가 많음.

- (위원장) 프라운 호퍼 얼라이언스와 같은 연구공동체와의 사전 접촉이 필요하며, 펀딩의 경우 장기적인 연구지속을 위해 각자의 국가에서 매칭 펀드를 이용하는 것이 좋을 것임.

- 3.3. 차세대 이차전지 연구성과 대외 홍보
- 3.3.1. 차세대 이차전지 연구성과 전시회 (부제: "알성달성" R&D 성과 달성을 이루다(成)) 개최 및 전시
 - 정부 지원 이차전지 연구 성과를 국민에게 알리고, 현장 소통과 공감을 통해 과학기술의 중 요성을 공유하는 전시회 개최 및 참여
 - 현세대의 리튬이온전지부터 차세대전지 성과까지 과기정통부에서 지원한 이차전지 연구개발 성과를 한자리에서 확인할 수 있는 자리를 가짐.
 - "알성달성" R&D 성과 달성을 이루다(成)) 전시회 행사

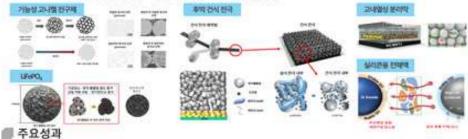
- 서울 양재동 엘타워에서 열린 "알성달성" R&D 성과 달성을 이루다(成)) 행사에는 이종호 과학기술정보통신부 장관 등 정부 관계자와 삼성 SDI, LG에너지솔루션, SK온 등 관련 기 업, 한국배터리산업협회, 한국전기화학회, 한국공업화학회, 국가과학기술연구회 등 학계와 연구계 관계자를 포함해 100여명이 참석하였음.

○「이차전지 성과전시회」주요성과 전시 목록

주관기관명	순 번	구분	성과 내용	연구자
한국화학연구원	1	리튬 이온	고에너지밀도 리튬이온전지 핵심 소재 기술	석정돈 (책임 연구원)
	2	리튬황	고용량·고안전성 리튬황전지용 핵심소재기술	
	3	전고체	고용량·고안전성 전고체전지 핵심소재기술	
한국과학기술 연구원	4	전고체	초고안정성 전고체전지 핵심기술 개발 및 대면적 전고체 전지 기술 개발	정경윤 (책임 연구원)
	5	나트륨 이온	소금을 활용한 초저가형 소듐(나트륨)이온전지 기술 개발	이용흠 (학생 연구원)
한국전기연구원	6	전고체	차세대 전고체 전지용 소재, 전극 및 셀 제조기술	하윤철 (책임 연구원)
	7	리튬황	차세대 리튬-황 전지용 소재, 전극 및 셀 제조기술	
한국에너지 기술연구원	8	전고체	전기자동차(EV)용 전고체 이차전지 성능 향상 혁신 기술	장보윤 (학생 연구원)
	9	레독스 흐름	재생에너지 변동성 제어가 가능한 저가 장주기 플로우배 터리 ESS 개발	신경희 (책임 연구원)
포항공과대학교 한국생산기술연구원 한국과학기술원 한국전기연구원 한국전자기술연구원	10	리튬 금속	전기자동차용 차세대 리튬 금속 이차전지 기술개발	이상민 (교수)

[※] 현세대전지(리튬이온), 차세대전지(리튬황, 전고체, 나트륨이온, 레독스흐름, 리튬금속) 성과 전시

○ "알성달성" R&D 성과 달성을 이루다(成)) 행사 참여 연구기관들의 연구 성과



- 한국화학연구원의 차세대이차전지 주요 기술 개발성과
- 고에너지밀도 리튬이온전지 핵심 소재 기술

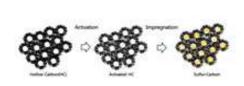
- (기술개요) 고에너지밀도 리튬이온전지용 소재 및 전국 기술 개발
- (기술내용) 고성능 리튬이온전지 전극 소재 및 공정 기술 개발

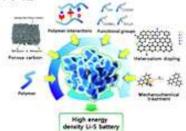
고성능 리튬이온전지용 기능성 분리막 및 전해질 기술 개발

- 고용량 양국 활물질 전구체 및 양국 활물질, 후막 견식 전국 기술 개발을 통한 고에너지밀도 리튬 이온전지 핵심기술 확보
- 고내열성 분리막 및 전해액 개발을 통한 고안전성, 고출력 리튬이온전지 핵심 소재 기술 확보
- 국내 특허율원 5건
- 기대효과
- 리튬이온전지 원천기술 확보를 통한 기술 선도
- + 리튬이온전지 글로벌 주도권 수성

- 고용량·고안전성 리튬황전지용 핵심소재기술

BRANCOS


고용량 고안전성 리튬 황전지용 핵심 소재 기술


과학기술정보통신부

주관연구개발기관: 한국화학연구원

₩ 기술개요 및 내용

- · (기술개요) 리튬 황전지용 황 양극소재 및 나노 탄소 격리막 소재 개발
- (기술내용) 황 양극내 70% 이상 황함량 및 1000 mAh/g 황활용를 갖는 고에너지밀도 리튬 황 전지용 양극 소재 개발 리튬 황전지의 수명특성 확보를 위한 나노 탄소 격리막 개발

주요성과

- 다공성 탄소 담지체를 이용 고합량, 고 황활용률의 황 전국 소재 및 고안전성 리튬 황 전지를 위한 나노 탄소 격리막 개발을 통한 리튬 황전지 핵심 소재 원천기술 확보
- 국내특허 등록1/출원3, Chem, Eng. J (F=16,744)의 6편 논문 발표

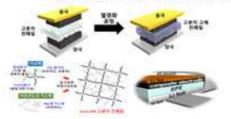
기대효과

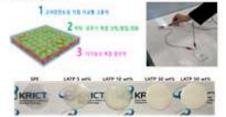
- 고에너지밀도 리튬 황 전지 핵심소재 기술 확보를 통해 차세대 리튬이차전지 기술 선도
- 핵심소재 기술 확보를 통한 리튬 이차전지 핵심소재 해외의존도 완화 및 국가 경쟁력 강화 기대

- 고용량·고안전성 전고체전지 핵심소재기술

B944578

고용량 고안전성 전고체전지 핵심 소재 기술


과학기술정보통신부


117.3

주관연구개발기관: 한국화학연구원

기술개요 및 내용

- (기술개요) 차세대 이차전지용 고문자 전해질 및 다기능성 일체형 전해질/분리막 개발
- (기술내용) 전고상 고문자 전해질 소재 및 전고체 리튬 고문자 전지 원천 소재 개발 고용링 고안전성 유무기 하이브리드 전해질/분리막 핵심 소재 개발

- 고이온전도도 고분자 전해질 완전기술 개발을 통해 차세대 리튬 고분자 전지의 고용량, 고안전성 및 장수명 회보
- 유무기 일체형 전해질/분리막 핵심소재 개발 및 설계 기술 확보를 통한 고에너지밀도 전고체전지 구현
- 내열성이 향상된 유무기 하이브리드 전해질 기술개발을 통한 차세대 이차전지 고안전성 구현
- 논문 20편, 특히 27전, "전고체 고분자 전지 기술" 기술이전 (선급 2억 경상기술료 1% 10억) ■ 기대효과
- 전고체 전지용 소재의 원천기술 개발 및 융합화를 통한 차세대 이차전지 기술 선도
- 기술 자립화 달성 및 국가 경쟁력 강화, 탄소중립 실현 및 환경문제 해결

- 한국과학기술연구원의 차세대이차전지 주요 기술 개발성과
- 초고안정성 전고체전지 핵심기술 개발 및 대면적 전고체전지 기술

과학기술정보통신부

초고안정성전고체전지핵심기술개발및대면적전고체전지기술개발 주관연구개발기관: 한국학기술연구원

■ 기술개요 및 내용

108-100002225-15903

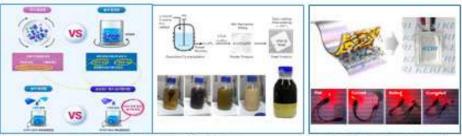
- (기술개요) 고이온전도성 고체전해질 개발 및 대면적 전고체 전지 제조 기술 확보
- (기술내용) 전고체 전지의 핵심 소재인 고체전해질의 이온전도도를 상용 액체전해질의 수준으로 향상시키고, 이를 활용한 대면적 전고체 전지 째조 기술을 개발

주요성과

• 다수의 전고체 전지 관련 국내 특히 등록 및 관련 기술에 대한 포스코제이케이슬리드솔루션 기술 이전 진행

■ 기대효과

- 고이온전도성 고체전해질 적용을 통한 고안정성 대면적 전고체 전지 개발
- 소금을 활용한 초저가형 소듐(나트륨)이온전지 기술
- 한국전기연구원의 차세대이차전지 주요 기술 개발성과
- 차세대 전고체전지 및 리튬황전지 소재·전극·셀 제조기술



차세대 전고체전지 및 리튬황전지 소재/전극/셀 제조 기술

주관연구개발기관: 한국전기연구원

■ 기술개요및 내용

- 전고체전지 핵심소재인 고체전해질 특수합성기술 개발 및 체조공정 핵심기술 개발을 통한 전고체전지 상용화 주도
- 3차원 구조 판소나노튜브 전국 기반 황 양국 기술 및 소재 혁신을 통한 세계 최고수준 고에너지밀도 리튬황전지 기술 확보

왕화를 고체전해할 복수습식합성 기술 및 공진합성기술

고야 가입도 플러시를 지름한다. 기술

■ 주요성과

- 용액기반 황화물계 고체전해질 저가 대량합성기술 개발 및 기술 이전
- 3차원 전국구조 기반 고에너지밀도 라튬황전지 기술 개발 및 기술 이전

🧊 기대효과

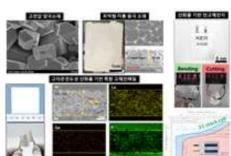
• 전고체전지 및 리튬황전지 기술 기반 확립 및 차세대전지 상용화 주도

- 한국에너지기술연구원의 차세대이차전지 주요 기술 개발성과
- 전기자동차(EV)용 전고체 이차전지 성능 향상 혁신 기술

전기자동차(EV)용전고체이차전지성능향상혁신기술개발

주관연구개발기관:한국에너지기술연구원

■ 기술개요및 내용

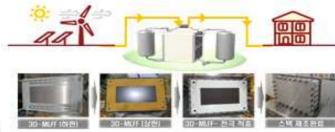

- (기술개요) 전기자동차 주행거리 항상을 위한 고용량, 고전압, 고이온전도성 핵심 소재 개발과 전고체 전지 제조 공정 기술을 개발하여 전고체전지 성능항상
- · (기술내용)
- 전고체 전지 핵심 소재인 양국, 음국, 고체 전해절막 개발 가술
- 고전압 양국, 고이온전도성 산화물 기반 복합고제 전해질, 초박형 리튬 금속 음극을 개발하여 전고제 전치에 적용 성능 향상
- 개발 소재 기반 적중형 전고체 파우치셜 개발.
 21 Stact 셸 기준 270Wh/kg 에너지 밀도 확보

· 적층형 전고체전지 파우치셀 에너지 밀도 270 Wh/kg 달성

III 기대효과

신규소재, 신규 전고체 이차전지의 개발을 통한 이차전지 新시장 개척

- 재생에너지 변동성 제어가 가능한 저가 장주기 플로우배터리 ESS


#F7##21605791 R002 784403

과학기술정보통신부

재생에나지변동성제어가기능한저가장주기플로우배터리ESS개발

주관연구개발기관: 한국에-1자기술연구원

- 기술개요 및 내용
 - (기술개요) 화재 위험성이 없어 안정성이 확보된 플로우 배터리 기반의 ESS의 구현이 가능한 2kW급 스택 개발
 - (기술내용) 3D-MLFF (Multi-Layer Flow Frame) 공정 기술 개발로 확장성이 용이하여저가차 영산화 가능한 kw급 스택 개발 가공 시간, 1/60 단축으로 생산단가 1/10 낮춤

■ 주요성과

- 국내·외 특허 (제10-2352369호, 17/986174), 레독스 플로우 BTS(battery-to-system)
 산·학·연 협력 R&D HUB 구축
- 🎒 기대효과
- MWh급 확장이 가능한 플로우쌔터리 ESS 개발 및 전력계동 연계 장주기 실증으로 글로벌시장 진출 기반 확보

- 포항공과대학교의 차세대이차전지 주요 기술 개발성과
- 전기자동차용 차세대 리튬 금속 이차전지 기술

전기자동차용 차세대 리튬 금속 이차전지 기술개발

주관연구개발기관: 포항공과대학교

■ 기술개요 및 내용

- + (가송제요) 전기자동차용 차세대 이타전지(430 Wh.kg. 1000/Wh/L) 리통금속 원반기송 제임
- * /7H0:HS

저녀용 대면적 리통공속 제조기술: 저가실 그에너지였도 확보할 위한 리뷰공속 박작승 공장 기술 개설

리통규속 보호기술(보호약-전체적) 장기신의성 확보를 위한 리통규속 제한 부족 기술 개설

3차원 리를 중국 가슴:고양출력이 가능한 리를급속 구조체 중국 가슴 제일

고체 초강산 본리막 가슴: 기능성 고향 본러(등 통한 리를 만드라이트 성장 역세

리통급속 전고세전지/급속전지 불명당 기술: 고에보지 및도 화를 위한 별 경영학 및 430Mh/kg급 전지 평가

■ 주요성과

- ·전태도금 활용 물투볼 연속식 리듬박 제조공정기술, 저가면 기반리듬추출 공정기술 개발/ 저무식성 리듬금속 전지용 전략질 설계
- 단이온 전도성 복합 보호막기술 팩보 / 고체초강산 작용 분리막 개발 / 430Mh/kg급 리통금속 이치전지 설계 / Ag-Li 항급 음극 기반 전고체 전지용 웹 제조

◎ 기대효과

- 저비용 리튬박 제조 원천기술 확보/ 화박 전해역 전략을 통한 고에너지밀도 리튬금속 기반 이차전지 장수명 확보를 위한 리튬금속 음국 계면 설계
- 고체 초감산 소재 개발을 통한 리튬 수지상 성장 역제 및 계만안정성 항상에 기여/ 고체전해질 박막화 기술과 기준 소재 기술을 결합해 대면적 다착충 열 구현가능

3.3.2. 2023 대한민국 과학기술대전 전시

○ 대용량 전력저장시스템을 위한 초저가형 소듐이온전지 핵심 소재 기술 개발

- 리튬이온전지에 쓰이는 원료의 가격이 급등함에 따라, 소듐을 이용한 저가형 소듐이온전지 개발이 이루어지고 있음.
- 본 연구에서는 바닷물에 풍부한 소금을 전극소재로 활용할 수 있는 가능성을 열어, 해외 소재에 대한 의존성을 낮추고 경제성을 확보할 수 있는 기반을 마련함.
- 소금(NaCl)의 전기화학적 활성화 기술을 개발하였고, NaCl을 활용한 전극 제조 공정을 개발하였으며, 이를 활용하여 전지를 제조함.

전시기술	세계 최초 소금(NaCl)의 전기화학적 활성화 기술을 개발하였으며, 이를			
간단설명(최상단)	통해 차세대 소듐배터리용 전극으로 활용 가능성을 제시			
연구목표	소듐이온 기반 대용량 전력저장시스템용 이차전지 소재 원천기술 개발			
연구배경 및 필요성	기존 리튬 가격의 상승과 리튬 원자재 확보의 어려움으로 인해, 저렴하			
	고 매장량이 많은 소듐을 활용한 전지 개발이 필요			
연구내용 및 결과	전기화학적으로 비활성 상태인 염화나트륨(NaCl)의 구조를 전기화학적			
	활성화 기술 공정을 통해 전기화학적으로 활성상태의 구조로 변환하였			
	으며, 해당 소재를 활용하여 전지를 제작하여 소형 전자기기를 구동시킴			

○ 고안전성 차세대 리튬전고체전지 기술 개발

- 화재 및 폭발 위험성을 제거하는 고안전성 차세대이차전지인 리튬전고체전지를 연구하고 있으며, 고이온전도성 고체전해질 및 고에너지밀도 전고체전지를 개발함.
- 현재 상용화 되고 있는 리튬이온전지는 가연성의 액체전해질을 사용하고 있어 화재 및 폭발에 취약하다는 문제점이 있으며, 이러한 문제를 극복하고자 기존 가연성의 액체전해질을 비가연성의 고체전해질로 대체하여 리튬이온전지의 안정성을 개선한 차세대 이차전지인 리튬전고체전지가 활발히 연구되고 있음. 또한 리튬전고체전지는 고용량 음극과 양극을 사용할 수 있게 하여 전지의 에너지밀도를 크게 증가시키며, 전기자동차의 주행거리를 향상시킬수 있음.
- 계산과학을 통해 고이온전도성의 고체전해질을 설계하였으며, 이를 기반으로 액체전해질의 이온전도도에 상응하는 10 mS/cm급 고이온전도성 고체전해질을 개발하였음. 개발된 고체 전해질을 이용하여 복합양극 및 고체전해질 막을 제조하였으며, 이를 이용하여 고에너지밀 도 전고체전지를 개발함.

	계산과학을 기반으로 하여 고이온전도성의 신규 고체전해질을 탐색
전시기술	및 설계하였으며, 이를 통해 15 mS/cm급 고이온전도성 고체전해
간단설명(최상단)	질을 개발하였음. 또한, 해당 소재를 활용한 대면적화/박막화 기술
	을 개발하여 고에너지밀도 전고체 전지에 활용하였음.
연구목표	리튬 전고체 전지용 고이온전도성 신규 고체전해질 개발 및 이를
	활용한 대면적화/박막화 기술 개발
	이차전지 시장이 성장함에 따라 이차전지의 에너지밀도 및 안정성
	향상에 대한 요구가 증가하고 있음. 전고체 전지의 핵심은 휘발성
어그베크 미 피O서	의 유기계 전해질을 무기계 고체전해질로 대체한 것으로, 이를 통
연구배경 및 필요성	해 안정성을 개선시킬 수 있을 뿐만 아니라 고전압/고용량 소재를
	적용하여 에너지밀도를 향상시킬 수 있어 차세대 이차전지로 주목
	받고 있음.
	계산과학을 통해 고이온전도성 신규 고체전해질을 탐색 및 설계하
	였으며, 이를 실험적으로 재현하여 15 mS/cm급 고이온전도성 고
연구내용 및 결과	체전해질을 개발하였음. 또한, 해당 소재를 대면적화/박막화 하는
	기술을 개발함으로써 밴딩 가능한 고체전해질막을 제조하여 대면적
	의 전고체 전지를 제작하였음.

- 해당 기술 전시 패널

4. 연구 결과 활용 계획 및 기대 성과

4.1. 연구 결과 활용 계획

- 본 기획연구의 결과를 통해 차세대 이차전지 기술 개발을 위한 개방적 연구 생태계 조성을 위한 민관협의체 운영안이 도출되었음.
- 차세대 이차전지 협업적 연구 생태계를 구축하여 차세대 이차전지 연구분야의 중대형 국책 과제 도출 및 국제 협력과제를 추가 도출하고, 사업의 성과를 기반으로한 다양한 용도의 차 세대 이차전지분야 원천기술 개발 및 민간사업으로의 기술도입이 기대됨.
- O 차세대 이차전지 원천기술을 개발하는 과정동안 R&D의 고도화가 기대되며, 특히 분석 기술의 고도화는 다양한 차세대 이차전지 소재 외 다양한 소재의 연구에 활용이 가능할 것으로 기대됨.
- 차세대 이차전지 심층 연구 및 실용화 달성을 위한 국제적 연구협력체제 구축
 - 차세대 이차전지 기술의 실용화 달성 과정에서 발생할 수 있는 많은 기술적 난제들의 극복을 위해서는 단일 국가, 단일 연구그룹의 노력으로는 시간적, 물리적 한계가 있음.
 - 따라서 미국, 유럽, 일본 등 차세대 이차전지 분야의 기술 선도국과의 공동 수요 과제를 발굴하고, 이를 통한 기초·원천 기술 중심의 국제 우수 연구 그룹간의 공동연구를 통해 차세대 이차전지 분야의 난제기술들을 해결하고, 국가간 신뢰형성을 구축할 수 있는 계기를 마련코자 함.
 - 국제협력을 통한 차세대 이차전지의 거동 매커니즘 규명 및 전극소재의 열화원인 분석 등, 원천성격의 연구 협력을 통해 차세대 이차전지 미래 핵심기술개발을 위한 국제협력 네트워 크 수립에 활용 하고자 함.
 - 국제협력 및 공동연구를 통해 우리 기업의 기술력과 브랜드를 홍보할 수 있는 계기를 마련 하고 궁극적으로 국내외 차세대 이차전지 시장 선점을 위한 환경을 수립하고 함.

[사진] 2023년 12월 미국 시카고에서 열린 한국과학기술연구원과 미국 알곤 국립연구소간 차세대 이차전지 공동연구 워크샵

- O 민관협의체를 통해 구축된 연구 생태계는 차세대 이차전지뿐만 아니라 전반적 소재 및 부품 개발에 대한 Think-tank로 활용되어, 차세대 혁신기술들의 개발속도를 향상시키는데 활용이 가능함.
- 본 기획과제 종료 후 '차세대 이차전지 기술 및 성과 확산 지원 센터'의 설치를 계획 중에 있음. '차세대 이차전지 기술 및 성과 확산 지원 센터'를 통해 2024년부터 2029년까지 진행될 국내 R&D 과제, 국제협력형 R&D 과제들을 지속적으로 지원 및 모니터링 함으로써, 개방 협력형 차세대 이차전지 민관연구협의체 생태계 조성에 필요한 자원을 지속적으로 수집하고 새롭게 개발된 기술들을 홍보할 예정임.
 - 연구 과제에 대한 직접적인 지원과 더불어 차세대 이차전지 관련 학술 활동, 정보 교류 및 대외 협력, 성과 활용 증대 측면에서 산학연 네트워크 강화 및 교육 프로그램 개발, 연구 장비 인프라 공동활용 플랫폼 구축 등의 기초 원천 연구 역량 결집의 환경 조성을 목표로 함.

4.2. 기술적 측면 기대성과

- (차세대 이차전지 원천기술개발) 본 기획을 통해 도출되는 차세대 이차전지 수요기술과 핵심 소재 및 전지 제조의 원천기술을 확보가 가능하며, 민간 수요 기반의 차세대 전지기술의 우 선 개발이 기대됨
 - (전지의 에너지 밀도 및 효율 향상) 리튬금속음극전지 기술
 - (전지의 안정성 및 내구성 향상) 수계아연전지 기술
 - (전지의 소재 자립화) 나트륨이온전지 기술
- O (학술적 성과 향상) 본 기획을 통해 도출되는 차세대 이차전지 혁신 기술은 글로벌 선도 수준의 내용을 추구하면서도 민관협업체를 통해 기획됐다는 점에서 과학계, 산업계 뿐만 아니라 과학정책수립 분야의 SCI논문의 질을 세계 최고 수준으로 달성 가능.
- O (민간수요 기반 R&D 사업의 연구역량 결집 성과) 정책, 연구 및 생산 분야에서 최고 수준의 능력을 가진 전문가들과 함께 추진되는 이차전지 R&D 사업은 실질적 민간수요로 이어질 확률을 높임.

4.3. 경제적 및 산업적 측면 기대성과

- O (차세대 이차전지 시장 선점) 협력 개방형 차세대 이차전지 생태계에서 개발된 원천기술과 정부 부처의 지원정책을 바탕으로한 차세대 이차전지 혁신기술의 상용화 및 민간기업에서의 실질 상품 생산을 통해 차세대 이차전지 글로벌 시장의 선점 및 국가 성장동력 창출 기대
 - 차세대 이차전지의 기술 개발 및 수요기업 발굴을 통하여 국내에서 채굴이 불가능한 전략광물인 리튬, 니켈, 코발트 및 흑연 등이 포함되지 않은 새로운 음양극 전극소재의 개발과 이에 적합한 신규 기능성 부품 소재 기술의 개발을 통하여 자원독립형 차세대 이차전지 산업

의 시장 선점이 가능

- O (민관협의체를 통한 발빠른 차세대 이차전지산업 방향 주도) 창출된 차세대 이차전지 혁신 기술을 민관협의체를 기반으로 빠르게 수요기업을 통해 사업화를 진행하고, 우수한 국내 이 차전지 소재 및 제조기술을 바탕으로 세계의 차세대 이차전지 기술산업의 방향의 주도 기대
- O (이차전지 관련 R&D 산업의 확장 및 산·학·연 고용 증대) 다양한 차세대 이차전지 R&D 산업의 확장을 바탕으로, 관련 핵심 소재 및 부품들의 연구, 개발 및 생산에 필요한 고용 증가기대

4.4. 사회적 측면 기대성과

- O 저가형/장수명/고안전성 차세대 이차전지 기반 EV/ESS용 배터리 보급 활성화를 통한 궁극적 탄소중립을 실현하고, 친환경적 에너지 산업구조를 확보함으로써 우리나라가 에너지 선진 국으로 발돋움할 수 있는 기반 마련.
- O 본 민관협의체의 운영을 통해 도출되는 차세대 이차전지 혁신 기술은 글로벌 선도 수준의 내용을 추구하면서도 민관협업체를 통해 기획됐다는 점에서 과학계, 산업계 뿐만 아니라 과학정책수립 분야의 SCI논문의 질을 세계 최고 수준으로 달성 가능.
- O 민간수요 기반 R&D 사업의 연구역량 결집과 정책, 연구 및 생산 분야에서 최고 수준의 능력을 가진 전문가들과 함께 추진되는 '산·학·연·관 협의체'의 운영은 민간수요 조건을 충족시키는 기술 후보군의 수를 증가시켜 실질적 수요기술로 이어질 확률을 높임.
- O '민관협의체'를 통해 창출된 혁신기술을 빠르게 국내 차세대 이차전지 산업에 투입하고, 우수한 국내 이차전지 소재 및 제조기술을 바탕으로 글로벌 차세대 이차전지 기술산업의 방향을 주도 할 수 있음.
- O 민관협의체의 운영을 통해 개발된 차세대 이차전지의 원천기술들은 다양한 차세대 이차전지 R&D 산업의 확장에 시너지 효과를 불러 일으키고, 관련 핵심 소재 및 부품들의 연구, 개발 및 생산에 필요한 고용 증대 효과를 가져올 것임.
- 국제적 협력 네트워크 구축과 성과 공유협력강화를 위한 국제 교류회 개최 지원 및 국제 원 자재 공급망 및 수요처와 R&D 협력 확대 가능.
- O '차세대 이차전지 기술 및 정책 지원 센터'를 통해 국가 간 협력채널(산업·자원협력위 등) 확대 및 자원수요국과의 네트워크 활동을 통한 민간 해외진출 기반조성에 기여할 수 있음

[그림] 초격차 R&D 기반 강화 방안 (국가주도 국제협력 강화)

- O 차세대 이차전지 분야 '국제협력 협의체'를 구성할 수 있으며, 이를 통하여 국제협력 강화 컨트롤 타워 역할을 담당하고, 해외우수기관과의 연구협력을 위한 상호 사업 강화 및 25개 출연연 해외거점 연구소 및 MOU 체결 연구소를 구상 할 수 있음.
- O 산·학·연 연계 연구과제 지원 확대 및 산·학·연 연계 인력양성 프로그램을 통한 고급 전문인 력 양성 및 산업계 맞춤형 인재 양성 기대
 - 대학원 및 학연과정을 통해 전문교육을 받은 전문인력 양성 및 산업계 맞춤형 인재 발굴
 - 기업 맞춤형 연구과제를 수행하는 전문 대학원·학연과정 학생을 양성함으로써 졸업 이후 회 사로의 자연스러운 취업을 통해 인력을 보충
- 차세대 전지 기술 초격차 달성을 위하여 분야별 맞춤형 특성화 인력양성 프로그램을 발굴
 - 차세대 전지의 공백 연구 분야가 없도록 다양한 분야의 특화된 전문 인재 양성을 위한 전지 설계·소재·고도분석 등 분야별 특화된 인력 양성 사업 개발 및 추진

