무인이동체 연구개발 사업 기획 연구

(A Study on Unmanned vehicle R&D Project Planning)

연구기관 : 인터젠컨설팅(주)

연구책임자 : 유종학

2024 . 5. 31.

과 학 기 술 정 보 통 신 부

최종보고서 제출양식

과 학 기 술 정 보 통 신 부 장 관 귀하

"무인이동체 연구개발 사업 기획 연구 "에 관한 연구의 최종보고서를 별첨과 같이 제출합니다.

2024 . 05 . 31 .

연구책임자 유종학 (인)

연 구 원 김재정 (인)

<u>안 내 문</u>

본 연구보고서에 기재된 내용들은 연구책임자의 개인적 견해이며 과학기술정보통신부의 공식견 해가 아님을 알려드립니다.

과학기술정보통신부 장관 이 종 호

제 출 문

과 학 기 술 정 보 통 신 부 장 관 귀하

본 보고서를 "무인이동체 연구개발 사업 기획 연구 "의 최종보고서로 제출합니다.

2024 . 05 . 31 .

연구기관명 : 인터젠컨설팅(주)

연구책임자 : 유종학 본부장/상무

연 구 원 : 김재정 책임연구원

연 구 원 : 이연주 선임연구원

연 구 원 : 고혜주 전임연구원

연 구 원 : 이성민 연구원

연 구 원 : 박시현 연구원

연 구 원 : 조민진 연구원

연 구 원 : 정혜원 연구원

※ 연구기관 및 연구책임자, 연구원은 실제 연구에 참여한 기관 및 자의 명의임.

요 약 문

과제번호	RS-2023-	0028016	연구	기간	2023년 2024년	_	_	~		
과제명		한글) 무인이동체 연구개발 사업 기획 연구 명문) A Study on Unmanned vehicle R&D Project Planning								
연구책임자 (주관연구기관)	유종학	참 여 연구원수	총	8명	연구비	80	0,000천	00천원		
			요약							
□ 연구목	莊									
ㅇ 무인이동	통체 연구개발	사업기획 5	보고서 경	작성						
│ □ 연구내-	8									
ㅇ 무인이동	동체 연구개발	관련 사업기	기획서 결	작성						
- 무인이등	동체 정책기획을	· 통해 발굴된	된 <mark>추진</mark> 분	-야별 임·	무수행을 위헌	· 연구개발	사업기후	획		
- 무인이-	동체 분야별 연	연구개발 수요	요조사(학	백심기술,	주요부품 등 포	함)				
	년구개발 활동 <i>7</i>				- 업목표					
	동체 관련 국제		•	요시)						
1	진을 통한 성3 사업과의 차별		•	시						
·	가입하다 기관 사제별 특성을				무표치 설정					
	주요 정책과의									
- 연구기	발 기술별 수	요기관 식별	¹ 및 활	용방안	연구					
│ │	4									
ㅇ (사업근)	거자료) 무인이	동체 연구기	개발 사	업의 추격	진, 재원조달	의 기초자	豆			
ㅇ (신규연-	ㅇ (신규연구과제 도출) 기술/경제/사회적 트렌드가 반영된 연구과제 신규발굴									
1	내응 기여) 재난현장 임무형 무인이동체 개발을 위한 사업기획을 통해 재 ·에 기여									
· ·	계 돌파) 무인 ·영된 RFP 형태			•			적 개발	목		
□ 중심어										

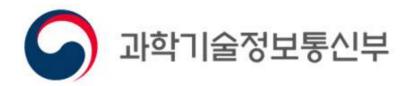
ㅇ 무인이동체, 재난대응, 기술한계 돌파, 동력원, 자율운용

비공개 사유 비공개

기간

최종보고서(초안) 평가의견 및 수정·보완 요구사항

과 제 명	무인이동체 연구개발 사업 기획연구						
연구기간	2023년 12월 1일 ~ 2024년 5월 31일 (6개월)						
주관연구기관	인터젠컨설팅㈜						
연구책임자	(소속) 인터젠컨설팅㈜ (직위) 본부장 (성명) 유종학						
연구비	80 백만원						
	평가결과						
점수	90.60 / 100점						
종합평가의견	 무인이동체에 대한 국내외 연구개발 현황을 폭넓게 조사하였으며, 다부처 및 동 분야 전문가 의견을 바탕으로 연구가 적절히 진행되었음 과기정통부가 신규 추진중인 무인이동체 개발사업에 대해, 전문가 의견수렴을 통해 재난현장에서 필요한 무인이동체임무 2건(대형화재, 수난사고 대응)을 발굴하고, 임무중심형 R&D로 수행하기 위한 국내외 현황 분석, 임무투입시나리오 작성, 개발기술 설정, 중복성 검토, 사업추진 절차설정 등의 연구를 충실히 이행함 						
수정·보완 요구사항	 ○ 내역사업의 개발 성능 목표를 구체화하는 경우 과제제안자의 창의성이 저해될 수 있으므로 핵심적인 임무 성능 목표만을 제시하도록 권고함 ○ 성능목표 달성을 위한 시험의 시나리오, 절차, 검증방법, 시험성적서 요구 여부 등이 제안요구서 작성 시에 구체화되어야함을 언급할 것을 권고함 ○ [붙임2]의 재난안전 무인이동체 스펙조사에서 공상 플랫폼의 유형을추가하여 각 임무로의 활용 가능성을 살펴볼 수 있어야함 ※ 예시: 고정익, 회전익(멀티콥터형, 헬리콥터형), 복합형(틸트프롭, 리프트크루즈등) ○ 기존 사업 대비 현장 활용이 강조되는 사업으로 보이므로, 관련평가항목의 가중치를 강화할 것을 권고함 ○ 기대효과 부분에서 국민의 생명보호에 대한 수치적인 부분이추가할 것을 권고함 						


□ 수정·보완 요구사항

수정.보완 요구사항	조치 사항	해당 Page
O 내역사업의 개발 성능 목표를 구체화하는 경우 과제제안자의 창의 성이 저해될 수 있으므로 핵심적 인 임무 성능 목표만을 제시하도 록 권고함	- 각 임무환경에서 요구되는 최소한의 핵심성능을 별도로 구분하고, 해당 사항은 반드시 달성하되 그 외 사항은 연구자가 자율적으로 제안 가능함을 언급	61~62 72~74
○ 성능목표 달성을 위한 시험의 시 나리오, 절차, 검증방법, 시험성 적서 요구 여부 등이 제안요구서 작성 시에 구체화되어야 함을 언 급할 것을 권고함	추진방법(추진절차 및 내용)에 해당	97
○ [붙임2]의 재난안전 무인이동체 스펙 조사에서 공상 플랫폼의 유형을 추가 하여 각 임무로의 활용 가능성을 살펴볼 수 있어야 함 ※ 예시: 고정익, 회전익(멀티콥터형, 헬리콥터 형), 복합형(틸트프롭, 리프트크루즈 등)		118~160
○ 기존 사업 대비 현장 활용이 강조 되는 사업으로 보이므로, 관련 평 가항목의 가중치를 강화할 것을 권고함	- 선정평가지표의 결과활용(현장요원 및 국민의 안전 체감도 향상 가능성) 배점 상향 조정 - 리빙랩 관리지표의 임무목표 달성도 (현장대원 만족도) 가중치 상향 조정	98 105 110
○ 기대효과 부분에서 국민의 생명보 호에 대한 수치적인 부분이 추가 할 것을 권고함	- 대형화재 발생 시 무인이동체 투입으로 현장대원 사고 등 인명피해 10% 저감을 기대효과로 명시	114

재난안전 임무용 육해공 무인이동체 개발사업 기획보고서

2024. 5. 31.

목 차

Ⅰ. 추진배경 및 필요성
1.1 추진배경 1
1.2 추진경과 4
1.3 현황 및 필요성14
Ⅱ. 대내외 현황 분석
2.1 국내외 정책 동향 21
2.2 국내외 무인이동체 연구개발 동향 27
Ⅲ. 임무 현황분석 및 시나리오 수립
3.1 재난안전 임무발굴 34
3.2 소방청 임무 38
3.3 해양경찰청 임무 48
Ⅳ. 사업 추진계획 ····································
붙임 115

Ⅰ. 추진배경 및 필요성

1

추진배경

- □ 붕괴우려가 있는 대형화재 실내수색, 험한 파도로 접근이 어려운 근해사고 등 구조대원의 접근이 어려운 재난이 지속 발생하여 수 월한 이동성을 가진 무인이동체의 재난현장 적용 필요성 증가
 - 공장 등에서 발생한 대형화재 초기진화 후 **생존자 구조, 화재확산 저지를** 위한 화점수색이 요구되나 붕괴위험으로 현장요원 투입이 매우 위험
 - '24.2월 문경 공장화재에서 화재 초기진화 후 생존자 및 화점수색을 위해 진입한 소방대원 2명이 급격한 불길확산으로 탈출하지 못하고 사망

사고 개요

- ※ 문경 공장화재 수색진입 소방대원 2명 사망 사건
- ▶ (사고개요) 2024. 1. 31.(수) 19:47 경북 문경시 신기동 육가공공장 화재발생
- ▶ (인적피해) 사망 2(소방대원)
 ▶ (동원세력) 인력 348명, 장비 63대 투입
- ▶ (사망경위) 초기진화 후 실내에 요구조자가 없다는 증언에도 불구하고 실내에서 1명이 탈출, 추가 생존자가 있을 것으로 판단되어 소방대원 4명 진입, 불길이 급격히 확산 되어 건물 붕괴 시작, 2명은 탈출했으나 2명은 고립후 사망

AS-IS(현대응체계 한계)

▶ 실내상황 : 대피자 증언에 의존

▶ 진입여부 : 건물 외부에서 판단

▶ 화점/인력수색 : 소방대원 직접수색

TO-BE(무인이동체 적용시 개선)

- ▶ 실내상황 : 무인이동체가 진입후 가시화
- ⇒ ▶ 진입여부 : 실내정보 기반 진입여부판단
 - ▶ 화점/인력수색 : 드론, UGV 1차 수색
- 기상이변으로 해양환경이 급격히 변화하여 선박사고가 급증하고
 있으나, 유인구조세력을 통해 해난사고 대응에 한계
 - '24.3.9일 통영에서 급격한 기상악화로 어선침몰, 급격한 물살로 조난자가 광범위하게 흩어져 신속한 수색과 구조가 어려워 선원 전원 사망 및 실종
 - * 그 외 2.15일 완도 어선전복, 2.15일 서귀포 화물선 침수, 3.1일 제주 어선 전복, 3.14일 통영어선 침몰, 3.17일 포항 어선전복 등 풍랑주의보시 지속적으로 해난 사고 발생, 대응 매우 시급

사고 개요

※ 통영 욕지도 어선 침몰 선원 9명 전원 사망 및 실종사건

- ▶ (**사고개요**) 2024. 3.9.(토) 6:29 통영 인근 어선 연락두절, 욕지도 남방서 전복 발견
- ▶ (인적피해) 사망 4, 실종 4명
- ▶ (사망경위) 3. 9. 수중수색 중 3명(한1, 인2) 발견 / 북서방 7해리 해상(인1) 발견 / 10 일간 수색, 추가발견X

AS-IS(현대응체계 한계)

▶수색 : 급격한 물살로 조난자 광범

위하게 흩어져 수색 난항

▶ 구조 : 풍랑주의보 상황으로 유인

대원 구조투입 어려움

TO-BE(무인이동체 적용시 개선)

▶ 수색 : 드론-USV 협업으로 넓은 범위 수색

▶ 구조 : 위험상황에서도 무인이동체를 통해

구조활동 수행, 초동조치 가능

- □ 해외는 대형화재 및 해난사고와 같은 **접근이 어려운 재난현장에 무인** 이동체를 투입하는 연구가 활발, 특히 현장전문가의 R&D 참여가 활발
 - 기존 인력·장비를 통한 대응을 보완하여 신속하고 효과적 대응이 가능한 무인이동체가 세계적으로 활발히 개발 중
 - 특히 재난 현장의 특수성을 고려하여 현장과 협력한 무인이동체의 연구가 진행 중
 - (대형화재) 佛 파리 소방대원과 콜로서스社가 협업개발한 화재진압UGV '콜로서스'가 노트르담대 성당 화재진화에 투입('19), 독일항공우주센터와 긴급구조기관(소방청 등)이 협력하여 대형화재 긴급출동 모니터링 드론을 개발('22)하는 등 재난현장 협력 무인이동체 개발이 활발
 - (해난사고) 獨 독일 프라운호퍼 연구소는 수난사고시 수중에서 요구조자를 부력하여 구조하는 무인이동체를 개발('23) 중국, 포르투갈 등 해난사고 대응용 무인구명보드 개발('18)
- □ 국내는 재난현장용 무인이동체 개발이 추진되었으나 **단일기체 중심개발**, **현장과 협력부족**으로 가시적 성과 한계
 - 복사열 200℃의 대형화재 실내현장, 풍랑주의보 상황의 해상구조환경 등 극한조건에서 골든타임 확보를 위해 이기종무인이동체 협업은 필수
 - * 현재 개발중인 해양사고 신속대응 군집수색 자율수중로봇시스템은 해경청 단독사업 으로 추진중이며 수중무인이동체의 수중탐사강화를 목표로 개발 진행 중
 - ** 소방용 4족 보행 로봇 기반 인명탐지 화재진압 솔루션 개발 및 소방 로봇 센서 실증 (소방청/산업부/행안부) 등 화재대응 무인이동체는 단일 기체 개발을 중심으로 추진

- 극한의 재난상황에서 임무수행하는 무인이동체 개발을 위해 과기부의 도전적
 연구와 재난부처의 풍부한 현장경험이 결합된 부처협력연구가 반드시 필요
 - 과기정통부는 무인이동체 원천기술에 집중 투자하여 기술수준을 항상, 행안부· 소방청·해경청 등 재난대응 부처와 협력을 통한 재난현장 무인이동체 적용 적기
 - * 원천기술 분야 세계 최고 대비 국내 기술수준 : ('17) 60% → ('22) 80%

*	기조	무인이동체	R&D 밀	재나혀장	R&D의	하계와	부처혀려	필요성
7 •×	/ I =	± 1000			NOUL	こうコー		$=$ \pm \circ

- □ 무인이동체 분야 R&D 한계 : 공급자 중심 연구로 현장적용 부족
- 연구자 수요기반의 요소기술 확보에 중점을 두고 R&D 추진하였으나 실제 현장에서 활용가능한 무인이동체 개발에는 다소 미흡
 - 정부주도 기체개발은 공백, 확보한 원천기술을 통한 임무형 무인이동체 개발은 기술이전, 사업화 연계 등으로 민간 주도로 추진, 정부는 기술 공급을 중심으로 역할 수행 중
 - 이러한 상황에서 민간에서도 과감한 투자가 어려운 시장실패 영역에 대한 임 무공백 발생
- □ 재난현장 R&D 한계 : 단기/실용화 중심 연구로 극한조건의 도전성은 부족
- 재난현장 실용성을 위해 상용품/선행기술의 현장화R&D를 중심으로 추진, 이로 인해 구조요원의 장비측면에서 성과가 우수한 반면 극한환경에 첨 단무인이동체 적용은 부족
 - 재난 현장부처 중심의 연구개발은 예산규모와 현장적용 용이성을 고려하여 유 인인력의 장비개선을 중심으로 추진 중
 - 극한조건에서 무인이동체 적용 니즈는 많으나, 첨단기술 개발과 첨단기술적용 에 따른 규제개선 등을 복합관리하는데 재난부처 역량만으로 부족
- □ 과기부(극한환경 도전)-행안부/소방청/해경청(재난현장 실용화) 협력R&D 필요
- 복사열 200°C, 해상상태4 등 극한조건의 도전성과 재난현장과의 지속적 협력을 통한 실용화를 위해 첨단기술 확보와 도전적R&D 경험이 풍부한 과기정통부와 재난현장 경험이 풍부한 현장부처의 협력은 필수
 - 과기정통부는 그간 무인이동체 분야에서 기술수준을 지속적으로 향상, 다수 원 천기술을 확보하였으며, **현재 추진중인 무인이동체원천기술개발사업을 통해 성 과 가시화중**
 - 행안부는 재난안전 총괄부처로 제도개선을 주관, 소방/해경청은 이미 119리빙 랩, 오션리빙랩 등 현장전문가를 R&D협력에 투입할 기반이 마련된 상황

2

추진경과

[1] 추진경과 개요

경과	내용		
R&D 전략 수립	· 무인이동체 연구개발 전략(안) 수립	′23.12.	
사업기획 추진 · 다부처 사업기획 추진(과기부-행안부-소방청-해경청)		′24.1.~	
사업기획 방향설정	· 사업기획 추진 관련 행안부(재난안전연구개발과) 협의 진행	′24.2.5.	
	· 사업기획 추진 관련 소방청(기획재정담당관) 협의 진행	′24.2.29.	
VI EVI - 00 E 0	· 사업기획 추진 관련 해경청(장비기획과) 협의 진행	′24.3.4.	
	· 다부처 사업기획회의 개최(과기부, 행안부, 소방청, 해경청)	′24.3.8.	

(2) 다부처 협업 현황

□ 협의체 구성 현황

협의체 유형	■ 부처 간 협의체 □ 관리기관 간 협의체(전문기관, 사업단 등) □ 통합 협의체(부처+관리기관) □ 기타 유형 ()						
	연번	성 명	소속 및 직위	비고			
7.44	1	김현옥	과기정통부 융합기술과 과장	위원장			
구성 인원	2	김동수	행안부 재난안전연구개발과 과장				
	3	박종영	소방청 기획재정담당관 계장				
	4	김성호	해경청 장비기획과 계장				

□ 협의체 운영계획 및 실적(최근 3년간)

ㅇ 분기별 1회

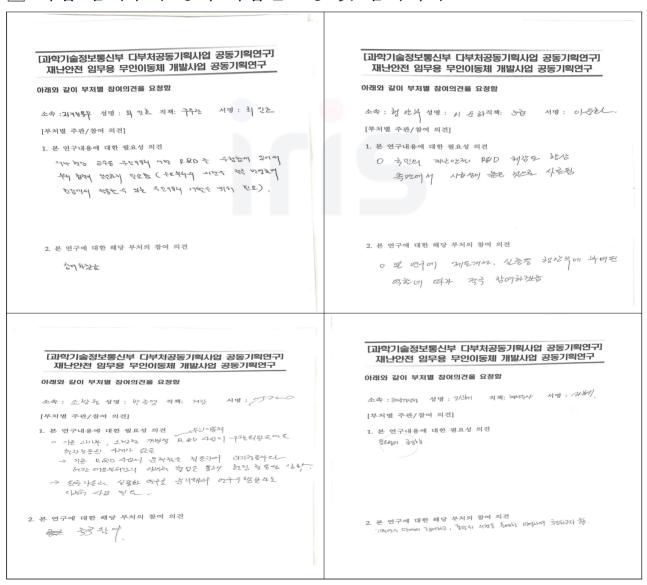

개최일시 (장소) 주요 안건		주요 안건	참석자
1	'24.2.5. (과기부)	o 과학기술 및 재난안전 총괄부처 간 사업추진방향 및 협력방안 논의	과기부, 행안부, 국립재난연, 연구재단
2	'24.2.29. (행안부)	o 수요부처(소방청) 협력 방안 및 사업추진체계 참여 논의	과기부, 행안부, 소방청
3	'24.3.4. (화상회의)	o 수요부처(해경청) 협력 방안 및 사업추진체계 참여 논의	과기부, 행안부, 소방청, 해경청
4	'24.3.8. (소방청)	o 예산 배분에 대한 사항 논의	과기부, 행안부, 소방청, 해경청

□ 2025년도 예산 요구 시 사전협의 결과

협의 기관 (회의 일시)	협의 및 자문 내용
과기정통부, 행정안전부, 국립재난 안전연구원, 한국연구재단 (2/5)	 주요 협의자 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 국립 재난안전연구원 R&D관리・평가센터
	 협의 및 자문내용 재난안전 관련 무인이동체 적용 필요성 및 수요제기 요청 재난현장 무인이동체 적용시 고려사항 재난안전 R&D 협업 포인트 발굴
	 주요 협의자 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 소방청 기획재정담당관
과기정통부, 행정안전부, 소방청	 협의 및 자문내용 재난안전 임무용 무인이동체 개발사업 추진방향(안) 및 총괄위 구성 운영계획(안) 검토 사업 추진체계 개편 부처별 예산규모
(2/29)	재난안전 임무용 무인이동체 개발사업 다부처 회의 방명록 2024.02.29.[목] 소속기관 성병 직해 서명 과기용부부 유합기술과 최인호 주무관 최 인호 정상인전부 지난안전연구개발과 이호화 사무관 이 전 원니 인터센전설등(주) 김재정 책임 긴 제 정 전 신 시

소속기관	성명	직책	서명
과기정통부 융합기술과	최인호	주무관	刘 空走
행정안전부 재난안전연구개발과	이순화	사무관	01 5 10
인터졘컨설팅(주)	김재정	책임	21 mm
10° 30	바음성	02+32	4 3 9
4	01 83 84	04%	01 1121

협의 기관 (회의 일시)	협의 및 자문 내용								
과기정통부, 행정안전부, 소방청, 해양경찰청 (3/4) *화상회의	 주요 협의자 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 소방청기획재정담당관, 해양경찰청 장비기획과 협의 및 자문내용 해양경찰청의 참여의사 확인 재난안전 임무용 무인이동체 개발사업 추진방향(안) 및 총괄위구성 운영계획(안) 검토 부처별 예산규모 								
과기정통부 행정안전부, 소방청, 해양경찰청 (3/8)	○ 주요 협의자 - 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 소방청 기획재정담당관, 해양경찰청 장비기획과 ○ 협의 및 자문내용 - 부처별 예산규모 - 부처 MOU 추진여부 - 현장부처에서 제시한 임무수요 구체화 - 1차 총괄기획위원회 운영 계획 공유								


□ 부처간 성과배분 및 성과활용 계획

- (성과배분) 부처별 사업성과는 공동성과로 배분
- (성과활용) 연구개발 성과를 확산하기 위한 2단계 사업 연계 추진
 - 개발한 무인이동체 실증 및 평가 결과를 반영, 상용화추진위를 통해 행 안부, 소방청, 해경청 등이 참여하여 현장화하는 사업 추진

□ 사업 운영관리규정 현황

○ 향후 사업추진과정에서 협력체계 강화를 위한 MOU 추진 예정

□ 사업 참여부처·청의 사업필요성 및 참여의지

(3) 세부 추진경과

회의명 (회의 일시)	주요 내용							
제1차	 주요 참석자 과기정통부 기초원천연구정책관, 행정인 발과, 소방청 기획재정담당관, 해경청 위원회 등 							
	 회의 안건 재난안전 임무용 무인이동체 개발사업 추기획 현황 공유 및 검토 재난안전 임무용 무인이동체 수요조사 7(소방/해경) 임무수요 관련 논의 							
총괄기획			제1차 재난안전	인모용	무이이동	체 개박시	1억 기회	
위원회 개최			MIN MEEL		회 방명			(024.03.19(5년)
1164 714		구분	소속	-	직책/직급 국장	이름 황판식	Alg Se Tec	
(3/19)	THE PERSON NAMED IN COLUMN 1		과기정통부 기초원천연-	정책관	과장	김현옥	2142	
(3,23)	Control of the state of the sta				주무관	최인호	割り	
		주관	행안부 재난안전연구	받과	과장	김동수	なる	
	A SHARWAY TO A SHA	부처	소방청 기획재정당	171	팀장	이순화	0150	
			조망정 기획세정함 해경청 장비기획	-	계장	박종영 김성호	NI M	
			경찰청 과학기술개		계장	이재훈	0174	
		전문 기관	한국연구재단 국책연-	본부	본부장	최영진	2	_
		212	서울대학교 항공우주:	학과	교수	이복직	0/13	22,
			서울대학교 항공우주	학과	교수	(위원장) 김현진	7	5
			한화시스템		차장	윤석민	10	V
			아크릴		이사	고의열		粉
		전문	라스테크 SK텔레콤		대표 팀장	성낙윤 이병석	0/02	n
		위원	한국항공우주연구	y	단장	강왕구	1498	4
			한국전자통신연구	ij	본부장	임채덕	a	~
			선박해양플랜트연구		본부장	전봉환	Mer	7
			한국로봇용합연구 한국기계연구원	ğ	본부장 심장	김무림 이한민	192	LN)
	ㅇ 주요 참석자		「재난안전 임무용	무인이	75.	10.55	51	
	- 과기정통부 융합기술과, 소방청 기획재정		30	2024	변화의 방등 .04.02.(화			
	담당관, 국립소방연구원, 총괄기획위원 등		소속	직책/직급		H	-	비고
소방임무 및	○ 회의 안건		과기정통부 융합기술과	과장 주우관	김현옥 최인호	9	-	
	_ 人바처에서 계기치 이미스 6세 데케 기		한국연구재단 우주기술단	PO	김성벽	7/6	1/2	
기술 구체화	- 소방청에서 제기한 임무수요에 대해 기		ACCIONAL TRANSC	000	75.07	- 17	-)	
미치리시	술전문가 사전검토 내용을 토대로 임무		소방정 기획재정담당관	연구사	박정무	yr,		
기획회의			국립소방연구원	연구사	권진석	200	B	
(419)	및 기술 구체화		국립소방연구원	연구원	김태동		V	
(4/2)	- 사업기간 내 R&D 및 현장화 R&D 기		200	- 0.00		'0 en	F0	
			충북소방본부	소방위	박상인			
	간 등 연구추진절차 논의		한국항공우주면구원	단장	강왕구	18	34.	
	- 소방청 투입 예산규모 및 투입방식		한국전자통신연구원	본부장	임재덕	K		
	논의							

회의명 (회의 일시)	주요 내용					
해경임무 및 기술 구체화 기획회의 (4/5)	 ○ 주요 참석자 - 과기정통부 융합기술과, 해경청 장비기획과, 해경청 해양안전과, 해경청 수색구조과, 해경청 정보통신과, 해경청 차세대경비기획단, 총괄기획위원 등 ○ 회의 안건 - 해경청에서 제기한 임무수요에 대해기술전문가 사전검토 내용을 토대로임무 및 기술 구체화 - 사업기간 내 R&D 및 현장화 R&D 기간등연구추진절차 논의 - 해경청 투입 예산규모 및 투입방식 논의 	다내는 안전 임무용 무인 소속 과기정통부 용합기요과 한국연구재단 우주기요인 해경정 장비기회과 연구개발제 해경정 하병안원과 안전기회계 해경정 수업구조과 구조대용제 해경정 장보통신과 통신운명제 해경정 차세대경비기회단 원단무단제 한국항공우주연구원 한국환공우주연구원 선택해정물연료연구소 인터센컨설팅 (시한당) 장당기원보기	01동체 개발 기술) 2024-04-05(급) 작 적 생명 과정 집원으로 되었으로 되었으로 되었으로 되었으로 되었으로 되었으로 되었으로 되었	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
소방 임무현장 및 시나리오 기획회의 (4/15) *화상회의	 주요 참석자 과기정통부 융합기술과, 한국연구재단 우주기술단, 소방청 기획재정담당관, 소방연구원, 총괄기획위원 회의 안건 현장 요건, 운영체계 등을 고려한 소방청 임무 현장 정의 					
해경 임무현장 및 시나리오 기획회의 (4/16) *화상회의	 임무내용, 임무절차 등 시나리오 점검 주요 참석자 과기정통부 융합기술과, 한국연구재단 우주기술단, 해경청 연구개발계, 해경청 해양안전과, 해경청 정보통신과, 총괄기획위원 협의 및 자문내용 현장 요건, 운영체계 등을 고려한 해경청 임무 현장 정의 임무내용, 임무절차 등 시나리오 점검 					
제1차 기술기획 위원회 개최 (소방임무 분과) (4/25)	 ○ 주요 참석자 - 과기정통부 융합기술과, 한국연구재단 우주기술단, 기술기 획위원(소방임무 분과) ○ 회의 안건 - 소방청 임무현장과 시나리오를 바탕으로 무인이동체 개발에 					

(회의 일시)	주요 내용				
	필요한 핵심 요소기술 도출				
	- 임무 수행체계 별 요구 기능/성능 구체	ਨੀ			
	- 남부 구행세계 월 표가 기당/성당 가세	와 			
		재난안전 임무용 : 1차 기술기획위			2024.04.25
	7世	소속	직책/직급	성명	비고
	○ P → P → P → P → P → P → P → P → P → P	과기정통부 용합기술과	주무관	최인호	최 인
	전문기관	한국연구재단 우주기술단	단장	이행진	0 340
		세종대학교	교수	송진우	화상참여
		홍익대학교	混夺	김의호	화상참(
		한국항공대학교	卫令	이우경	화상참(
	1	아주대학교	교수	이현범	화상참
	1	광운대학교	교수	오렉준	화상참
	The state of the s	한국기계연구원	박사	김지철 (간사)	ala
		한국전자통신연구원	박사	미전민	017
		한국전기연구원	박사	이지영	화상참
		한국항공우주연구원	박사	황인성 (간사)	Es -1
	中智7世	인터젠컨설팅	책임	김재정	1920
	1012	2-12-22-0	선임	미연주	0 101
	 주요 참석자 과기정통부 융합기술과, 한국연구재단획위원(해경임무 분과) 회의 안건 	· 우주기	술단	<u>ㅏ</u> , ァ]술/
제1차	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과)	로 무인역			
기술기획	 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) 회의 안건 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 	로 무인역	이동?	체 <i>기</i>	
기술기획 위원회 개최	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인 ⁽ 화 ^{제난만전 임무용 무} ^{IX 기술기획위(0}	이동?	제 <i>기</i> ^{(사업 기획} 방명록	개발 C
기술기획	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인 ⁽ 화 <u>재난안전 임무용 무</u> 1차 기술기획위(0	이동제 개월 언이동제 개월 제정업무분과)	체 <i>기</i> 사업기획 방명록	바보 C
기술기획 비원회 개최	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(화 <u>제난안전 임무용 무</u> 1차 기술기획위(6 소속	O] 동 / 인이통제 개발 개경업무분패) 작돼자라 주무관	체 기획 방명록 생형 최연호	위 발 C 2024.04.25.1제 비교 최 인호
기술기획 원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(화 <u>제난안전 임무용 무</u> <u>1차 기술기획위(0</u> 소속 과거정통부 용합기술과 한국연구째단 우주기술단	이 동 : 언이통제 개별 개정임무분과) 작년 작년 학생 전 학생	지 기획 방명록	비교 * 인호. 이 3~1,21
기술기획 비원회 개최 (해경임무	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(화 <u>제난안전 임무용 무</u> 1차 기술기획위(6 소속	O] 동 / 인이통제 개발 개경업무분패) 작돼자라 주무관	체 기획 방명록 생형 최연호	위 발 C 2024.04.25.1제 비교 최 인호
기술기획 비원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(화 <u>제난안전 임무용 무</u> <u>1차 기술기획위(0</u> 소속 과거정통부 용합기술과 한국연구째단 우주기술단	이 동 : 언이통제 개별 개정임무분과) 작년 작년 학생 전 학생	지 기획 방명록	비교 * 인호. 이 3~1,21
기술기획 비원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) o 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인 여	O] 동 / 인이통체 개발 제경임무분패) 작무관 단장 교수	지 기획 방명목 최연호 이영진 정신규	# 인호 이 글 2/2 의 항상점에
기술기획 비원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) O 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(O)동 / O()동제 개별 제정임무분교) 지택(제급 주무권 단장 교수	지 기획 방명록 청명 최인호 이성진 정신규 김진환 이상용 원안성	# 한 C 2024.04.25(제) #교 최 인호 의상점이 외상점이 외상점이
기술기획 비원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) O 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(패난안전 임무용 무. 1차 기술기획위(6) 소속 과거정봉부 용합기술과 한국연구재단 우주기술단 경희대학교 KAST FMS 한국항공우주연구용	O] 동 / 인이동제 개발 제정임무분교기 작작시라 주무관 단당 교수 교수 이사 박사	지 기획 방명록 생형 최인호 이해건 정신규 김진환 이상흥 원안성 (김사)	기 발 C 2024.04.25.1제 비교 최 인
기술기획 비원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) O 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(재난안전 임무용 무(1차 기술기획위(0) 소속 과기정통부 용합기술과 한국연구제단 우주기술단 건화대학교 KAST FIMS 한국항공우주연구원 한국전자통신연구원	O) 동 : O() 동제 개별 제정임무분과) 지택(작급 주무근 단장 교수 고수 이사 백사	지 기획 방명록 성명 최원호 이해진 정신규 김진환 이상용 확인성 (건서)	2024.04.25.1째 비교 최 인호 와상함이 와상함이 와상함이 하상함이 하상함이 하상함이 하상함이 하상함이 하상함이
기술기획 원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) O 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(패난안전 임무용 무. 1차 기술기획위(6) 소속 과거정봉부 용합기술과 한국연구재단 우주기술단 경희대학교 KAST FMS 한국항공우주연구용	O] 동 / 인이동제 개발 제정임무분교기 작작시라 주무관 단당 교수 교수 이사 박사	지 기획 방명록 생형 최인호 이해건 정신규 김진환 이상흥 원안성 (김사)	# 발 C 2024.04.25.1제 비교 # 인
기술기획 원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) O 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인(재난안전 임무용 무(1차 기술기획위(0) 소속 과기정통부 용합기술과 한국연구제단 우주기술단 건화대학교 KAST FIMS 한국항공우주연구원 한국전자통신연구원	O) 동 : O() 동제 개별 제정임무분과) 지택(작급 주무근 단장 교수 교수 이사 박사	지 기획 방명록 청명 최인호 이형진 정신규 김건환 이상용 왕인성 (건사) 여건민 백만송	# 발 C 2024.04.25.18) # 교 # 인
기술기획 비원회 개최 (해경임무 분과)	- 과기정통부 융합기술과, 한국연구재단 획위원(해경임무 분과) O 회의 안건 - 해경청 임무현장과 시나리오를 바탕으 필요한 핵심 요소기술 도출 - 임무 수행체계 별 요구 기능/성능 구체	로 무인 (화 재난안전 임무용 무 1차 기술기획위(0 소속 과기정통부 용립기술과 한국연구제단 우주기술단 경희대학교 KAST FMS 한국청공우주연구원 한국전자통신연구원 선택해양물랜트인구소	O] 동 / 200동체 개발 #경임무분교기 작책/작급	지 기획 방명록 청명 최연호 이행진 정신규 김진환 이상용 왕인성 (김사) 여건민 백만승 (건사)	기발 C 2024.04.25.1위 비교 최 인호. 이 글 2 / 이 화생점이 화생점이 화생점이 화생점이 화생점이 화생점이 화생점이 화생점이

(5/2)

회의명 (회의 일시)	주요 내용
	 주요 참석자 과기정통부 융합기술과, 한국연구재단 우주기술단, 총괄위원, 기술기획위원(간사)
-10-1	 회의 안건 소방/해경 임무현장과 시나리오를 바탕으로 도출된 핵심요 소기술에 대한 정합성, 타당성 검토 기존 유사사업 검토 및 본 기획사업 차별점 도출
제2차	재난안전 임무용 무인이동체 개발 충괄위 기술검토회의 방명목
총괄위원회 개최	구분 소속 작지시간 성명 비교 구가정부 기조회인구경제집 2개 강단 및 전 1년 전 주관 제 1년 및 전 1년
(4/30)	소환하기타지만되면 제일 박동영 1557~~~ 報경 전에기작고 제일 강성도 환성함의 전문기관 한국연구에는 우구에는 연구를 만할
	서울대학교 항공우주광택과 교수 집한단 원성원에 현장대학교 소방병행학과 교수 조성 원성원에 한왕시스템 자장 윤식민 원성원에
	9금말 이사 고의명 유산명의 중심위원 라스테크 대표 상각을 <u>주 나</u> 당 5시점으로 단당 이용석 유산명의
	변국단제공성단구용 본부장 용되다 변국로부용업단구별 본부장 경우림 회상점에 변국기계업구원 상당 이런은 최상점에 변국기계업구원 상당 이런은 최상점에
	○ 주요 참석자
	- 과기정통부 융합기술과, 한국연구재단 우주기술단, 기술기 획위원(무인선 및 자율구명정 분과)
	○ 회의 안건
제2차 기술기획위	- 총괄위 검토의견 및 해경청 협의내용 공유
개최	- 각 개체 별로 도출된 요소기술 분류/조정 - RFP 구체화를 위한 핵심 기술/제품 성능지표 선별 및 목표
(무인선 및	지 도출
자율구명정 분과)	재난안진 임무용 무인이동제 개발사업 기획 2차 기술기회에(무인선 및 지율구정그래프트 분과) 방향력 2차 기술기회에(무인선 및 지율구정그래프트 분과) 방향력

DNA+CZ JON JOH	

				2024.05.02.[唱]
구분	24	직책/직급	성명	비교
F관부처	과기정통부 용합기술과	주무관	최인호	新奶声
변문기관	한국연구재단 우주기술단	단장	이행진	_
	선박해양플랜트연구소	WA	박한술 (간사)	27/2
기술	KAIST	卫수	김진환	화상참여
기획위원	FIMS	이사	이상음	서면검토
	서울대학교	교수	남보우	서면검토
수행기관	OCT TO LAKE	책임	김재정	712nm6
	인티젠컨설팅	선임	이연주	이어수

회의명	주요 내용
(회의 일시) 제2차 기술기획위 개최 (UGV	 ○ 주요 참석자 - 과기정통부 융합기술과, 한국연구재단 우주기술단, 기술기획위원(UGV 분과) ○ 회의 안건 - 총괄위 검토의견 및 소방청 협의내용 공유 - 각 개체 별로 도출된 요소기술 분류/조정 - RFP 구체화를 위한 핵심 기술/제품 성능지표 선별 및 목표치도출
분과) (5/2)	### #################################
제2차 기술기획위 개최 (드론 분과) (5/3)	 ○ 주요 참석자 - 과기정통부 융합기술과, 한국연구재단 우주기술단, 기술기획위원(드론 분과) ○ 회의 안건 - 총괄위 검토의견 및 소방청/해경청 협의내용 공유 - 각 개체 별로 도출된 요소기술 분류/조정 - RFP 구체화를 위한 핵심 기술/제품 성능지표 선별 및 목표치도출

회의명 (회의 일시)	주요 내용
제2차 기술기획위 개최 (GCS/통신 분과) (5/3)	○ 주요 참석자 - 과기정통부 융합기술과, 한국연구재단 우주기술단, 기술기 획위원(드론 분과) ○ 회의 안건 - 총괄위 검토의견 및 소방청/해경청 협의내용 공유 - 각 개체 별로 도출된 요소기술 분류/조정 - RFP 구체화를 위한 핵심 기술/제품 성능지표 선별 및 목표 치 도출

3

현황 및 필요성

[1] 무인이동체 분야 R&D 추진성과 및 한계

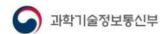
- 급속한 기술발전에 따라 무인이동체의 활동 범위가 육·해·공 및 우주로 확대, 우리나라는 꾸준한 과학기술 투자로 선도국을 추격 중
 - '16년, '무인이동체 발전 5개년 계획' 수립 후, '17~'20 무인이동체 R&D 투자는 약 1조 154억원 규모(누적)로 급속히 증가
 - < 무인이동체 분야 정부 R&D 투자 현황('12~'20) >

- 과감한 투자의 성과로 원천기술 분야 기술수준이 '17년 세계 최고 대비 60%수준에서 '21년 80%수준으로 20%p 향상
- 연구개발뿐 아니라 수요창출, 인재양성, 기반구축 등을 통한 산업화 촉진, 무인이동체 관련 기업 수 7배, 종사자 수 5배, 매출액 10배 증가

< 국내 무인이동체 산업 변화 ('15~'20) >

□ 기존 무인이동체 분야 R&D 한계

- **연구자 수요기반의 요소기술 확보**에 중점을 두고 R&D 추진하였으나 실제 현장에서 활용가능한 무인이동체 개발에는 다소 미흡
 - 정부주도 기체개발은 공백, 확보한 원천기술을 통한 임무형 무인이동체 개발은 기술이전, 사업화 연계 등으로 민간 주도로 추진, 정부는 기술 공급을 중심으로 역할 수행 중
 - 이러한 상황에서 **민간에서도 과감한 투자가 어려운 시장실패 영역에** 대한 **임무공백 발생**

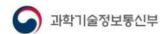

[2] 임무중심 R&D 및 정부주도 핵심 돌파기술 확보 필요

□ 무인이동체 개발을 임무중심 R&D로 재편

- 기술분야별 개별 원천기술의 확보에서 **임무중심 체계종합**으로 **현장 적용을 지향**하는 연구개발 필요
 - 특히, 민간에서 주도하기 어려운 **사회문제 해결**이나 **재난재해 대웅** 등의 시장실패 영역에서 **정부 주도로 임무중심 R&D** 추진 필요
- 무인이동체 **기획 및 설계 단계부터 현장수요를 반영**하고, 리빙랩 등 다양한 분야의 이해관계자가 참여할 수 있는 R&D 추진 필요
 - 기획에서부터 실증까지 R&D 전주기 연구를 통한 현장 적용성 향상 필요

□ 기술적 한계 돌파를 위한 정부주도 핵심 원천기술 개발

- 무인이동체 분야 공통기술 중심의 추격형 기술개발에서 **임무현장 한계 돌파**를 위한 **도전적 핵심기술 연구** 추진 필요
 - 무인이동체 분야의 공통원천기술은 전반적으로 성숙되었으나, 실제 임무 수행을 위해서는 특정 분야의 핵심 돌파기술 확보가 급선무


○ 기술적 난제를 명확히 정의·식별하고, 이를 해결하기 위한 R&D 목표 정립 필요

※ 해외 연구개발 현황

- □ (미국) 기술적 한계돌파 중심 경쟁형 R&D 추진
- 임무수요에 기초하여 **기술적 한계를 식별**, 기술적 한계 돌파 시 **파급효과가 큰 도전적 연구**를 선정
 - ※ DARPA는 사막 자율주행, 재난구조 등 도전적 임무의 기술적 난제를 글로벌 경쟁을 통해 돌파 유도하는 Challenge를 개최, 팀별 100~400만불 지원 ('04~'19)
- **현장점검**을 통한 **명확한 목표**를 제안 및 마일스톤 관리
 - **고위험 과제**는 복수 연구기관이 참여하는 **경쟁형 R&D**를 통해 다양한 옵션을 비교함으로써 기술적 한계를 돌파
- 프로젝트·프로그램별 평가로 기술개발 성과를 종합, **현장적용 가능한 성과창출 과제에 집중 투자**
- □ (유럽) 사회문제 해결을 위한 임무형 무인이동체 개발
 - **국가난제**로부터 무인이동체 개발수요 도출, 다양한 이해관계자 및 수요자가 기획에 참여하여 **무인이동체**, 운용시스템, R&D 과제 발굴
 - ※ ResponDrone(재난특화 드론 개발 프로그램), RAPID(인프라 관리 무인이동체 개발 프로그램), AiRMOUR(응급용 무인이동체) 임무중심 프로젝트 추진
 - 기술뿐 아니라 데이터, 기후환경, 도시학, 정책학, 시민 등 **다양한 주체가** 연구에 참여, 지속적 협력을 통해 세부사항 조정
 - **리빙랩 방식으로 실증**을 진행, 무인이동체를 **임무환경(도시, 재난 등)에 최적화** 하여 개발
- 과제기획 단계에서 **현장적용까지 프로그램에 포함**, 개발한 솔루션을 실증하여 **임무현장에서 적용가능토록 추진**

(3) 과기정통부, "원천성 + 공공임무형" 무인이동체 연구개발 추진

- □ "한계돌파기술 원천성 + 공공분야 임무중심" 무인이동체 R&D 추진
 - 과기정통부는 정부 주도의 **공공임무형 무인이동체를 개발**하고, 그 과정에서 **한계돌파를 위한 핵심 원천기술 확보**를 목표로 무인이동체 연구개발 전략 수립

○ 임무용 무인이동체 개발을 위해 **공공분야 중점임무 영역 선정 필요**, 무인이동체 및 각 분야 전문가 등을 대상으로 의견수렴 진행

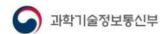
※ 전문가 의견수렴

- 참여자 : 무인이동체 전문가 및 우주, 도시 등 응용분야 전문가
- 조사방식 : 대면회의(3회) 및 서면평가
 - 전문가 위원회 대상으로 이동체 임무 도출 및 임무의 우선순위를 평가·취합
- 조사항목 : 이동체 임무별 우선순위 선별을 위해 공공성, 기술성, 시장성을 항목으로 설정하여 평가
- 조사결과 : 국가가 집중해야 할 공공임무 이동체의 우선순위 설문조사 결과 <u>①재난</u> 대응, ②국가안보, ③사회문제 순으로 우선순위가 높게 평가됨
- 전문가 의견수렴 결과, 정부가 추진해야 할 **중점임무로 "<u>재난대응"</u>** 분야가 1순위로 선정되어 핵심 추진과제로 설정
 - 추진과제로는 재난안전 임무용 무인이동체 개발과 동력원 등의 핵심기술 확보가 발굴되었으나, 시급성, 중요성을 고려하여 <u>재난안전</u>임무용 무인이동체 개발을 우선 추진

(4) 재난현장 임무용 육해공 무인이동체 개발 필요성 대두

- □ 현대재난 특성 : 대형화·복합화
 - 기후변화, 거대도시화 등으로 인한 현대 재난재해의 대형화·복합화로 예측·대응이 점차 어려워지고 피해는 증가
 - 기후변화로 인해 선박전복 등 해상재난 예측·대응에 취약¹⁾, 거대 도시화는 재난시 신속한 구조·대응을 어렵게 함
 - 재난재해의 대형화·복합화로 <u>기존 재난대응 체계의 취약점이 발생</u> 할 뿐 아니라 **재난대응 자원의 부족**으로 과학기술적 대응 절실
 - 기존 인력·장비를 바탕으로 변화하는 재난에 대응하는 것에 한계* 봉착
 - * (해양사고) 해경파출소 1개당 157.6km 관할로 상시·신속 재난대응에 어려운 실정 (도시재난) 인구밀집, 피해광범위화로 인해 차량 인력만 활용한 현장출동 및 대응 어려움

¹⁾ 실제로 최근 몇 년 사이 기후변화로 바다환경이 변하면서 돌풍이 늘고 파도가 세져 어선사고 속출, 경남 통영 욕지도 해상 어선이 침몰해 4명 사상('24.3.)



- □ 대응방향 : 무인이동체 현장화 + 다부처 협업사업 추진
 - 미국, 유럽, 일본 등 주요국은 기존 재난대응 체계의 취약점을 극 복하기 위해 무인이동체 적용을 확대
 - 특히, 효과적 무인이동체 적용을 위해 **현장대웅기관의 연구개발** 참여, 종합지원형 R&D(시나리오, 기술개발·실증, 현장화, MRO)를 추진
 - 한편, 우리나라는 원천기술개발을 통해 기술수준을 향상², **현장** 대응부처와 협력을 통한 재난대응 강화가 필요한 시점
 - 그간, 기술개발과 활용현장에 거리감이 있었고, 부처별 개별 R&D 추진이 진행되어 성과의 확장성이 부족했음
 - 이에 무인이동체 R&D 총괄부처인 <u>과기정통부</u>와 재난안전 관리· 대응 부처인 **행안부 및 현장부처의 협력 R&D 필요**

(5) 재난현장 무인이동체 임무발굴 및 다부처 협력체계 구축

- □ 행안부, 『재난안전분야 중장기 중점기술 연구개발 로드맵('24~'29)』발표
 - 재난안전 정책 기술 변화의 대응을 위해 중장기적으로 확보가 필요한 현장중심 실용기술을 선정하여 지원과제 발굴 및 신규사업 기획 등을 위한 로드맵 수립('23.12)
 - (주요내용) 자연재난, 사회재난, 안전사고 등 재난안전 관리 임무수행을 위한 34개 중점기술* 선정 및 단계별 연구개발 계획 수립** 국민이 체감하고 재난현장에서 요구하는 실용적 응용기술
 - (기대효과) 국민 현장 체감형 성과를 창출하기 위해 재난안전 핵심 정책과 연계한 현장 적용 중심 재난안전 투자 포트폴리오 강화
 - **(활용계획)** ^{매년}수요발굴·사업기획 → ^{매년}중기·시행계획 연계·활용

²⁾ 원천기술 분야 세계 최고 대비 국내 기술수준 : ('17) 60% → ('22) 80%

- □ 과기정통부 + 행안부 + 현장부처 연계포인트 발굴
 - 재난안전 주관·소관부처인 행안부에서 발표한 로드맵 검토 결과, 무인이동체를 통한 재난현장 임무 발굴
 - [●]대형화재(신개념 소화탄, 드론), [●]대형붕괴(초소형 구조 로봇), ^❸수난 사고(공중/수중 구조 로봇) 등
 - 해당 <u>로드맵의 무인이동체 개발 수요</u>를 과기정통부에서 추진하고자 하는 재난안전 임무용 육해공 무인이동체 개발 사업기획에 활용
 - 제시된 3가지 유형의 무인이동체에 대하여 산학연 및 현장 전문가 (소방, 해경 등) 대상 우선순위 설문조사 추진
 - 또한, 현장 전문가 대상으로 추가적인 서면 인터뷰를 통해 현장에 실질적 필요 정도와 요구사항 파악

※ 전문가 의견수렴

- 참여자 : 산학연 전문가 및 현장 전문가(소방, 해경 등)
 - 산학연 전문가 : 총 100명 대상(산업계 29명, 학계 7명, 연구계 64명)
 - 현장 전문가 : 총 100명 대상(소방 50명, 해경 50명)
- 조사방식 : 서면평가 및 인터뷰
 - 전문가 대상으로 무인이동체 적용 임무별 우선순위를 평가 취합
- 조사항목 : 무인이동체 임무별 우선순위 선별을 위해 공공성, 기술성을 항목으로 설 정하여 평가
 - 공공성 : 무인이동체 투입 필요성/개발 시급성/국고지원 필요성
 - 기술성 : 실증 및 현장적용 가능성/기술의 차별성/기술의 혁신성
- 조사결과 : 무인이동체 적용 임무 우선순위 설문조사 결과 ①수난사고, ②대형화재, ③대형붕괴 순으로 우선순위가 높게 평가됨

후보군	산학연 전문가 평균점수(/30점)	현장 전문가 평균점수(/30점)	가중평균결과 (3:7)	순위
대형화재 진화 및 구조 임무	23	22	22.3	2
대형붕괴 요구조자 탐지 임무	24	21	21.9	3
수난사고 예방 및 구조 임무	23	23	23	1

○ 우선순위 설문조사 결과를 토대로 **구체적 임무발굴**을 위해 과기정 통부, 행안부, 현장부처(소방청, 해양경찰청, 경찰청 등) 등 **다부처** 회의를 통해 임무수요 검토

- 임무수요 검토결과, 소방청과 해양경찰청에서 제기한 수요*가 과기 정통부 신규사업기획으로 적합할 것으로 판단, "(주관)과기정통부 -(협조)행안부-(수요)소방청·해경청" 다부처 사업으로 추진
 - * (소방청) 중대형화재 진압후 실내 투입이 가능한 무인이동체(드론,UGV 등) (해경청) 근해 사고대응을 위한 자율협력 무인이동체(드론, USV, 자율구명정 등)

※ <u>다부처 사업기획 추진경위 및 추진방향</u>					
□ 추진경위					
경과	내용	시기			
R&D 전략 수립	· 무인이동체 연구개발 전략(안) 수립	'23.12.			
사업기획 추진	· 다부처 사업기획 추진(과기부-행안부-소방청-해경청) '24.1.~				
사업기획 방향설정	· 사업기획 추진 관련 행안부(재난안전연구개발과) 협의 진행	′24.2.5.			
	· 사업기획 추진 관련 소방청(기획재정담당관) 협의 진행	′24.2.29.			
	· 사업기획 추진 관련 해경청(장비기획과) 협의 진행	′24.3.4.			
	· 다부처 사업기획회의 개최(과기부, 행안부, 소방청, 해경청)	′24.3.8.			

□ 추진방향

- (현장대응 중심) 재난재해 단계 중 이동체가 투입되어 주요 역할을 할 수 있는 대응단계에 초점을 맞추어 개발
 - 재난재해 대응단계에서 대형공장 및 물류창고, 조류가 강한 해역 등 **인력의 접근이** 어려운 현장이 다수 존재
- (시나리오 중심) 재난재해 현장에서 구체적 임무를 도출하고 시나리오에 기반하여 대응할 수 있는 무인이동체 개발 필요
 - 특히 재난대응 현장의 비정형성으로 인해 구조대원의 직관에 의지하고 있는 점에서 재난현장에 충분한 경험이 있는 전문가가 시나리오 기획에 참여
- (리빙랩 방식) 재난현장 특성-개발-적용 등 R&D 전주기에 현장수요자(End-User)가 참여하는 리빙랩 방식으로 과제 추진

Ⅱ. 대내외 현황 분석

1

국내외 정책 동향

국 외

- (미국) 세계 최고의 군사용 로봇기술을 바탕으로 **재난대응 이동체** 개발을 추진, 재난대응 관련 빅데이터 및 시뮬레이션 기술 활용 권고
 - 연방정부 차원의 재난재해 관리 기구인 연방재난관리청(FEMA)에서 재난정보 전달서비스, 로봇 등 첨단 과학기술을 활용한 구난 장비 개발 진행
 - 재난 구조 로봇 및 이동체 대회인 DARPA Challenge를 통해 재난 대응에 특화된 이동체 개발을 촉진
 - * 선발된 7개팀에 각 20억원, 본선에 나가는 6개팀에 각 13억원 지원, 우승 상금 22억원을 투자하는 등 경쟁형 R&D를 추진
- (일본) 대형화·복잡화하는 재난재해 대응을 위해 AI 등 첨단기술을 접목한 이동체 개발이 활발
 - 후쿠시마 원전사고 이후 인력 투입에 제약이 있는 **재난재해 현장** 대응을 위해 이동체 개발이 활발
 - * 로봇신전략('15)의 중점분야로 재난대응을 제시, 소방청 중점 연구개발 목표('17)로 관측과 소방활동을 수행하는 로봇시스템을 설정
 - 신로봇전략('15) 추진 과정 중 World Robot Summit '18(WRS)과 World Robot Challenge '18(WRC) 개최
 - * World Robot Challenge를 통해 로봇 기술개발 가속화, 기술 한계 극복, 신로봇 기술 응용·활용 활성화 방안 마련에 노력
 - World Robot Challenge는 신로봇전략('15)과 산업계의 요구사항을 반영하여 도전적 목표와 예상되는 기술 요소를 제시
 - * 후쿠시마 원전사고 등 사람이 접근하기 힘든 재난·재해 대응과 같은 대책 마련이 시급한 분야의 로봇기술을 개발

[참고] 일본의 신로봇전략(New Robot Strategy, `15), 5개년 계획

- ① 1,000억엔 규모의 로봇 관련 프로젝트에 대한 정부 및 민간 투자
- ② 로봇 시장 규모를 연간 2.4 조 엔으로 확대
- ③ 후쿠시마에 새로운 로봇 테스트 필드 건설
- ④ Wolrd Robot Summit 개최를 통한 혁신 촉진 및 공공 추진 가속화
- ⑤ 로봇 초기 도입 비용을 20% 절감하고 `20년까지 로봇 도입을 지원하는 인적 자원의 수 2배 증가

< 일본 World Robot Challenge 과제 및 세부내용 >

분야	과제	세부내용
재난 로봇	공장 재난 예방 (Plant Disaster Prevention Challenge)	- (산업계 요구사항) 사람이 접근하기 힘든 장소인 공장과 터널 재해에 대한 대응
	터널 재난 대응 및 복구 (Tunnel Disaster Response and Recovery Challenge)	- (목표) 사람이 접근하기 힘든 장소에 대한 인프라 검사, 유지·보수와 재난 예방 및 발생 시 정보 수집 과 대응 방안 제공 - (예상 기술 요소) 재난 발생 시 필요한 통합기술
	일반 재난 로봇 (Standard Disaster Robotics Challenge)	(이동성, 검사, 환경 인식 등), 현장 적용 가능성, 성능 평가 테스트와의 연계 등

- (EU) EU는 연구개발 프로그램을 통해 대규모 재난재해 대응을 위한 이동체 기술개발을 추진
 - EU 차원의 연구개발 프로그램인 'Horizon 2020'의 목표 중 하나로 재난재해 대응을 포함하여 재난대응 이동체를 개발
 - * 자연재해와 도심 재난 상황에 모두 대응할 수 있는 4쪽 보행 로봇 설계 (CENTAURO 프로젝트), 인간과 로봇 간의 협력을 강화하여 재난 대응 향상 (TRADR 프로젝트) 등
 - 또한, 'Horizon Europe'의 핵심영역2의 세부과제로 시민안전(Civil Security for Society)를 제시하며, 이동체 개발을 통해 재난현장 1차 대응을 강화를 목표로 연구개발 중*
 - * 이동체, AI 등을 통한 원격구조 프로그램, 위험환경 투입용 자율 UGV 개발 등 R&D프로그램 추진

국 내

- 정부는 **재난・안전 R&D 투자 시스템 혁신방안(안)**('19)을 발표하여 범부처 협력을 통해 **국민 체감 높은 재난안전 기술개발 투자**를 추진
 - 재난·안전 R&D 투자 시스템 혁신방안(안)(이후 혁신방안)의 중장기 관점의 수립 목적은 R&D 관리체계 강화, **범부처 협력**을 통한 **R&D 성과의 국민체감도 제고**임
 - 이를 위해 혁신방안은 추진전략으로 '투자체계 혁신'을 제시하고, 중점 추진 과제로 '재난현장 실수요에 기반한 체감형 R&D 투자'를 추진

< 재난·안전 R&D 투자 시스템 혁신방안 >

< 세면·현선 KQD 구시 시끄럼 역인당한 >				
정책목표		! 재난안전 R&D 추자를 통해 과학기술기반 안전사회 조성		
기본방향	중점 추진과제	세부 추진과제		
(관리체계 혁신)	· 재난안전 R&D 분류체계 신설	· '재난 및 안전관리 기본법'을 기반으로 안전사고 분야를 추가하여 재난안전 유형 및 재난관리 단계를 결합한 분류체계 도출 (재난유형 세분화+관리4단계 매핑)		
데이터 기반 관리	· 재난안전 R&D 사업체계화 및 통합관리 추진	· (분류체계 적용) 최근 3년간 수행 주요R&D 사업을 전수조사하여 분류체계에 따른 투자현황 분석 · (통합정보제공) 분류체계에 근거한 과제 및 예산 현황 등 각종 통계정보를 탑재한 재난안전 R&D 정보포털 구축		
(투자체계 혁신) SAFE 투자모델	· (SCENARIO) 재난원별 파급효과를 고려한 복합재난 대응 R&D 투자	· (시나리오제작) 자연현상(지진, 태풍 등)에 따른 1차 재난과 연쇄하여 표출되는 건물 붕괴, 화재, 도시침수 등 2, 3차 복합재난 파급영향 분석 · (복합재난R&D) 파급영향(피해위험도)이 높은 재난에 재난관리단계를 매핑하고 투자 비중이 낮은 곳에 우선투자하여 R&D공백영역 해소 추진		
	· (AREA) 지역별 재난안전 이슈를 반영한 지역특화 R&D 투자	· (지역안전) 재해연보, 지역안전지수 등을 토대로 계량화한 재난원별 위험도를 중앙부처 및 지자체에 제공하여 지역특화R&D 기획 유도 · (지역특화 R&D) 지역별 상대적인 재난안전 취약도를 기반으로 현안문제 해결을 위한 중점연구분야를 선정하고 R&D 투자와 연계		
구축	· (FIELD) 재난현장 실수요에 기반한 체감형 R&D 투자	· (수요발굴) 재난안전 현장수요를 사업기획에 반영하기 위한 수요조사를 실시하여 현장의 요구사항 도출 · (수요맞춤형 R&D) 발굴된 요구사항, 아이디어 공모 등과 연계하여 국민체감도가 높은 기획과제에 우선적으로 투자		
	· (EVALUATION) 주기적 성과추적을 통한 R&D 환류체계 강화	· (활용계획 수립) 사업별 예산요구시 재난관리단계를 고려, 구체적, 정량적 성과목표 및 현장적용 시기를 사전에 제시 · (활용성과 점검) 연구개발 결과가 현장적용까지 소요되는 평균시차를 고려하여 사업 종료 후 3년 까지 성과 전수조사		
(수행체계 혁신) 협의체 및 R&D 관리 전문화	· 재난안전 R&D 범정부 협의체 내실화	· (협의체 확대) 재난안전 R&D 지역현장 적용 확대를 위해 현 재난안전 R&D 범부처 협의체에 지자체를 포함하여 확대 · (기능강화) 재난안전 현안문제의 신속한 실행력 확보를 위해 협의체에서 협의조정된 협력사업 예산반영 우선검토		
	· 현장대응 부처 R&D 사업관리 전문성 강화	· (재난안전 사업관리 전문화) 행안부, 경찰청, 소방청 등 현장대응부처(청) R&D 사업을 동일 전문관리기관에 위탁하여 전문성 강화 · (통합로드맵 수립) 부처 합동으로 현장대응부처 R&D 연구성과 공유 및 상호연계를 통한 중장기 R&D 통합로드맵 수립		

- 정부는 제4차 재난 및 안전관리기술개발 종합계획('23 ~'27)을 발표하며 현장에서 활용하는 실용 기술을 개발하여 현장에서 요구되는 맞춤형 기술개발 추진
 - 국민이 체감하는 생활 속 안전수준 향상을 목표로 추진하며, 현장문제 중심의 해결을 강조

< 제4차 재난 및 안전관리기술개발 종합계획 >

비 전

재난안전기술 대전환 (Great Transformation of Disaster Safety Technology) 국민의 행복한 일상, 더 안전한 대한민국

추 진 목 표

실사구시 (Find Solutions, Based on The Field) 재난안전 문제해결, 미래위험까지 대비한 실용적 기술개발

전 략 과 제

추 진 전 략

- I 현장에서 작동하는 기술개발 현장 임무 중심의 촘촘한 대응체계 구축
- Ⅱ 국민 안전 지향 기술개발 일상이 안전한 국민 행복 맞춤형 R&D
- Ⅲ 미래 재난 대비 기술개발

첨단과학을 활용한 미래사회 위기 극복

추 진 과 제

- 신속·정확한 상황관리와 의사결정
- 현장에서 활용하는 실용 기술
- 온전한 일상 회복을 뒷받침하는 대비와 복구
- 국민이 체감하는 생활 속 안전수준 향상
- 안전하고 건강한 국민 일터 조성
- 온 국민이 안심하는 포용 사회 실현
- 불확실한 미래의 재난 예측력 강화
- 기후 위기 시대의 선제적 대응과 해결
- 새로운 방역 위협의 과학적 해결
- D.N.A* 플랫폼 기반 재난안전관리 선진화
 - * Data, Network, Al

혁 신 과 제

- ① 민간과 지역의 폭넓은 협력 재난안전 R&D 협업체계 강화
- 2 R&D 성과 전달체계 개선 재난안전 현장의 즉시 보급과 신속한 기술개발 체계
- 조는 경험과 지식을 함께 공유문제해결 역량축적디지털 플랫폼 구축

- 특히 실사구시가 가능한 실용적인 기술개발을 강조하며, R&D 성과가 재난안전 현장에서 문제를 해결할 수 있도록 추진
- 이동체 관련하여 현장의 난접근성을 해소 및 고위험현장 진입을 위해 드론 등을 활용한 무인능동 진압체계, 장갑형 로봇, 비행정찰 이동체, 협소공간 탐지 이동체 등의 개발을 제시

- * 자료 : 재난 및 안전관리기술개발 시행계획, 2023
- '23년, 정부는 「제5차 과학기술기본계획('23~'27)」에서 기술개발 중심의 기존 과학기술 정책에서 국가 문제해결로 외연확장 추진
 - (추진방향) 국가 연구개발 전략성 강화, 민간 중심의 과학기술 혁신 생태계 조성, 과학기술 기반의 국가적 현안 해결
 - (추진전략) ①질적 성장을 위한 과학기술체계 고도화, ②혁신주체의 역량 제고 및 개방형 혁신 생태계 조성, ③과학기술 기반 국가적 현안 해결 및 미래 대응
 - (중점분야) 제5차 과학기술기본계획에서는 미래위험에 대응하고 안전한 사회구현 구현을 목표로 중점 분야^{*}를 제시하여 현안 해결을 강조
 - * ①탄소중립, ②디지털 전환, ③의료/복지, ④재난/위기, ⑤공급망/자원, ⑥국방/안보, ①우주/해양

< 제5차 과학기술기본계획 >

비 전

과학기술혁신이 선도하는 담대한 미래

과학 기술 혁신

절적 성장을 위한 과학기술체계 전략 1 고도화

- 임무 중심 문제해결을 위한 R&D 전략성 강화
- 자율과 창의를 높이는 연구환경 개선
- · R&D 성과 창출 확산 및 활용 보호 기반 강화
- · 미래 핵심 인재 양성·확보
- 국민과 함께하는 과학문화 활성화

전략 2 혁신주체의 역량 제고 및 개방형 생태계 조성

- 민간 주도 혁신을 통한 성장동력 확보
- · 대학·공공연구기관의 혁신거점 역할 강화
- · 신기술·신산업 중심의 창업 및 성장 지원
- · 균형발전과 혁신성장을 이끄는 지역 혁신 체계 구축
- · 과학기술 외교·협력 리더십 확보

전략 3 과학 기술 기반 국가적 현안 해결 및 미래 대응

문제 해결 탄소중립 ㆍ 탄소중립 선도 및 지속가능한 환경으로 전환

디지털전환 ㆍ 디지털 전환기 선도적 대응을 통한 경제 재도약

의료/복지 • 100세 시대 과학기술 기반 국민건강 증진

재난/위기 • 미래위험 대응 및 안전사회 구현

공급망/자원 • 글로벌 공급망 재편 대응 및 선점

국방/안보 ㆍ 과학기술 강군 육성 및 사이버 주권 수호

우주/해양 · 우주·해양·극지 개척을 통한 과학영토 확대

기술패권 경쟁 대응 국가 전략기술 확보

반도체 • 디스플레이

이차전지

차세대 원자력

수소

차세대 토시

첨단 모빌리티

첨단 바이오 우주항공 • 해양

양자

첨단로봇 • 제조 사이버 보안

인공지능

◆ 재난/위기 분야 주요 내용

- 과학기술을 통하여 미래위험에 대응하고 안전한 사회를 구현
- 재난안전데이터 공유 플랫폼 운영
- 피해저감 기술 개발 등 재난안전 관리 체계를 구축
- 재난 각본 개발 등 미래위험 관리

2

국내외 연구개발 동향

국 외

- 재난현장 특성과 임무를 고려한 **임무중심 연구개발을 위해 재난안전 현장기관이 연구개발 전주기**에 참여
 - * 최종 사용자(End-User)와 컨소시엄을 구성하여 연구 수행
 - 주로 **사람이 갈수 없는 영역에 접근성 제공**하여 현장에 진입하거나 대응을 위한 의사결정 자료를 제공하는 등 **무인이동체를 통한 대응을 강화 중**

< 해외 재난안전 임무형 무인이동체 프로젝트 사례 >

프로젝트명	추진기간	예산	주요 내용		
	프로그램 : 3개월 118억원		개요	ResponDrone은 EU 주도로 군집 드론, 클라우드, 영상인식, 의사결정지원 기술 등을 통합하여 개발 중인 재난 대응 솔루션	
① ResponDrone 프로그램: 재난대응		목표	상황 평가 역량과 자체 보호를 강화하기 위해 응급 구조원이 여러 동기화된 임무로 여러 대의 드론을 쉽게 작동할 수 있는 통합 솔루션을 개발하는 것을 목표		
공중무인 이동체 및 솔루션 개발	~2022)	* 한국은 이 중 약 26만 유로 지원	연구 내용	 (기술개발) 재난대응 응급구조활동을 지원하는 드론 개발, 군집 운용 기술 개발, 재난대응 대원을 위한 영상인식 및 의사결정 지원기술 개발 (임무 시나리오 개발) 최종사용자가 참여하여 임무시나리오를 개발 (현장실증) 실제 재난환경을 모사하여 임무 시나리오에 따라 실증 	

<최종 개발 드론>

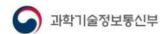
연구기관, 산업체, 최종사용자가 포함되는 컨소시엄을 구성

주관기관	독일 항공우주 센터(DLR)
연구기관	프랑스 국가 회복탄력성 고위 위원회(HCFRN), 프랑스 원자력 및 대체에너지 위원회(CEA), 시스 템 및 컴퓨터공학, 기술 및 과학연구소 (INESC TEC, 포루투갈),
참여기업	이스라엘 항공우주산업社(IAI), 알파무인시 스템社(UAS, 스페인), 탈레스그룹(Thales, 프랑스), 한국항공기술(KAT)
참여대학	인하대학교, 아르메니아 아메리칸 대학교 (AUA, 아르메니아)
<u>긴급구조기관</u>	라트비아 소방구조부(SFRS), 중부 마케도니아 지역정부(RCM, 그리스), 바르나 지방정부(RAV, 불기리아), 코르시카 소방부(SIS2B, 프랑스), 하글란덴 안전부(Safety Region Haaglanden, 네덜란드), 서부 마케도니아 지역정부(RWM, 그리스), 호주소방방재청 (NEMA), 아르메니아 비상대응부

프로젝트명	추진기간	예산		주.	요 내용				
			개요		시 요구조자 감지 및 구조를 위한 드론, · 센서 등 수색 및 구조 로봇키트 개발				
② CURSOR 프로그램 : 수색 및	5개년	약 746만	목표	점단센서를 장착한 드론 및 소형로봇 등을 활용하여 목표 매몰자를 신속하게 감지하여 구조시간을 단축하며, 추 붕괴사고 위험에 대한 현장 대원의 안전을 보장					
구	(2019 ~2023)	유로 (한화약 108억 원	연구 내용	 (기술개발) 최초 대응자의 운영 요구 사항을 반영하여 소형로봇 및 군집드론 기술개발, 매몰자 위치 파악 및 의사결정지원기술 개발 (임무 시나리오 개발) 실제 상황에 가까운 시나리오에서 최초대응자들과 함께 개발하고 평가한 솔루션을 제공 (현장실증) 붕괴된 건물의 대형 잔해더미 등 실제 재난환경을모사한 군부대 훈련용 장소에서 임무 시나리오에 따라 실증 					
<최초 대응자 !	및 기술파트니	- - 의크샵>		기술 파트너, 산업계, 학계 및 <u>최초 대응자와의 협력이 가능한</u> <u>컨소시엄을 구성</u> (최초 대응 위원회(First Responders Board) 운영)					
				<u>건조시험을 구성</u> (최소 내 주관기관	응 위원외(First Responders Board) 운영) 독일 연방 기술 구호 기관(THW)				
Ŧ				실무자	프랑스 소방관 전문교육 공공기관 (Valabre), 영국 머지사이드 소방 및 구조 서비스(MFRA), 프랑스 사보이 소방구조대 (SDIS73), 그리스 구조팀(Attica)				
<최종 개발	<최종 개발 드론 및 소형 로봇>			연구기관	그리스 통신 및 컴퓨터 시스템 연구소 (ICCS), 신테프 디지털(SINTEF, 노르웨이), 프랑스 원자력 및 대체에너지 위원회(CEA), 독일 표준화 연구소(DIN)				
				참여기업	EXUS(그리스), ASTRIAL(독일), 국제 보안 역량 센터(ISCC, 오스트리아), Tritral Research(영국), ARTTIC(프랑스)				
	THE BEAT			참여대학	일본 도호쿠대학, 영국 맨체스터 대학교				
				최초 대응 위원회	유엔 국제수색구조자문단(INSARAG), 국 제 도시수색구조(USAR, 미국팀, 네덜란 드팀), 리구리아 지역정부(이탈리아), 일 본 총무성 소방방재청, 바이에른 적십자 사 우베 키프니히(Uwe Kippnich)				
			개요	구조요원들의 요구사항을	e) 작전에 투입되는 최초 대응자 및 을 반영하여 재난현장에서 활용가능한 당비 및 드론, 로봇 플랫폼 개발				
③ Search & Rescue 프로그램:	4개년	약 789만	목표	최초 대응자를 위한 고도로 상호 운용 가능한 모듈식 개방형 아키텍처 플랫폼을 설계하여 현장 요원의 의사결정을 지원하고, 모니터링 시스템 등 미래 재난 관리 시스템 구현					
프도그램: 수색 및 구조작전에서 최초 대응자를 위한 신기술 및 솔루션 개발	4개년 (2020 ~2023)	약 789만 유로 (한화 약 114억 원)	연구 내용	(기술개발) 최초 대응자 및 구조요원의 요구사항을 반영하여 SAR작전에 필요한 핵심 요소기술 개발, 현장 투입 가능한 웨어러블 장비 및 드론, 자율주행 로봇 개발 (임무 시나리오 개발) 대규모 파일럿 시나리오를 통해 장비 및 플랫폼 테스트 수행, 개발 과정에서 최초 대응자들과의 워크숍을 진행하여 솔루션을 제공 (현장실증) 실제 대규모 지진 및 산불 발생지역, 비행기 추락사고, 화학물질 유출 등을 모사한 환경에 투입되어 임무 시나리오에 따라 실증					

프로젝트명	추진기간	예산			주요 내용			
	할이 의하 오래	[] [인 워크샨		산학연 전문가 및 최종 사용자와의 협력이 가능한 컨소				
Selficos Cir. Neves Baddate 14	HA Riber, On	RD Marie-Christine	_	주관기관	그리스 아테네 국립기술대학교(NTUA)			
Respond	equirements for ers' Technologi	First		연구기관	AIDEAS(에스토니아), 지속가능한 이동성 및 운송네트 워크 연구소(I.MET.), 공공 안전 커뮤니케이션 유럽 포럼(PSCE, 벨기에), 독일 인공지능 연구센터(DFKI),			
assistance Suse	3 December 2020 assistance Responding Resp			참여기업	소프트웨어 상상력 및 비전(SIMAVI, 루마니아), MAGGIOLI SPA(이탈리아), Konnektable Technologies(KT, 아일랜드), 탈레스그룹(THALES, 이탈리아), 아토스그룹(ATOS, 스페인), UKEMED(UGL, 키프로스), SYNYO(오스트리아), 유비텍(UBITECH, 그리스)			
			추진 체계	참여대학	이탈리아 칼리아리대학교(UNICA), 피렌체대학교(UNIFI), 가톨릭대학교(UCSC), 벨기에 브뤼셀 자유대학교(VUB), 벨기에 하셀트대학교(UHASSELT), 폴란드 SAN대학교 (SPOLECZNA AKADEMIA NAUK)			
				최종 사용자	그리스 수색구조단체(EOD), 그리스 소방대 졸업장교 및 부사관협회(EPAYPS), 독일, 오스트리아 지역사회 지원센터(JOHANNITER), 이탈리아 국립연구위원회(CNR), 프랑스 국제긴급소방관(PUI), 루마니아 PROECO-CBRN 클러스터, 스페인 마드리드 커뮤니티(SUMMA 112), 스페인마드리드 지역사회 바이오헬스 연구 및 혁신 재단(FIIBAP), 스페인 구조 및 탐지견 학교(ESDP)			
			개요		하기 위해 높은 수준의 보호와 증강된 운영 능력을 보장하는			
					협업 대응을 위한 차세대 통합 툴킷(NGT)을 개발, 통합 테스트 및 검증			
4 Ot asset		목표	첨단 기술 솔루션을 제공하여 자연재해, 인재 및 위기 상황에서 최초 대응자들이 협력 대응을 통해 보다 효율적으로 활동하고					
INGENIOUS		약 896만 유로	-	더 많은 생명을 구할 수 있도록 지원				
프로그램 : 최초 대응자의 협력적 대응을 위한 차세대 통합 툴킷 개발	4개년 (2019 ~2022)	(한화 약 130억 원, * 한국은 이 중 약 35만 유로 지원	어 많은 생명을 구할 수 있도록 시원 • (기술개발) MAX드론(Multi-Purpose Autonomous eXplor 전 맞춤형 자체 탐색 드론) 및 MIN군집드론(Micro droNe), 실시간 위치 파악을 위한 지상 및 공중 다중 선스템 결합, 실내외 검사 및 모니터링 기술, 내부 및 물가적 손상 감지 3D 모델링 기술 개발 • (임무 시나리오 개발) 프로젝트 및 기술 코디네이터, 최종 시워크숍을 통해 기능적·비기능적 요구사항을 논의하고 솔루션 • (현장실증) 침수공간, 붕괴지역, 건물화재 및 산업재해, 공공장: 등 실제 재난현장을 모사한 환경에 투입되어 임무 시나리오 설					
<최종 기	사용자 워크	' 샵>		최종 사용자(End-Users)인 현장 투입요원의 참여 체계 강화				
13-1				주관기관	고스 아테 국간 불대교 통신 및 컴퓨터 사스템 연구소(CCS)			
<최종 개발 드론>			추진 체계	연구기관	독일 항공우주 센터(DLR), 신테프 디지털(SINTEF, 노르웨이), 한국로봇융합연구원(KIRO), 그리스 국립연구기술 개발센터(ITI), 스웨덴 국방연구소(FOI), 키프로스 비즈니스 혁신센터(CYRIC)			
				참여기업	CS그룹(프랑스), 테크니커(TEKNIKER, 스페인), EXUS(그리스), 잉글랜드 AI 연구社trilateral research), 그리스 소프트웨어 솔루션 개발社(SingularLogic), 그리스 공공 안전애플리케이션 솔루션 개발社(satways), 스위스 레이저 장비업체(Alpes Lasers)			
				참여대학	네덜란드 트벤테대학교 지리정보과학자구관측학부(ITG, 스페인 바르셀로나 공립대학교(UPF), 오스트리아 공과대학(TUM)			
To				최종 사용자	스페인 바스크 지방자치경찰(Ertzaintza), 프랑스 대학병 원(AP-HP), 스웨덴 지방 소방서(SBFF),, 국제수색구조팀 독일(ISAR germany), 북아일랜드 경찰청(PSNI), ATTICA 그리스 구조팀(HRTA),			

< 해외 재난안전 임무형 무인이동체 개발 사례 >


	이동체	개발 기관	플랫폼	적용 재난	주요 내용
	THERMITE RS3	Textron	육상	대형 화재	 화재건물 안쪽에서 불길 진압이 가능하고 적외선 카메라 및고 화질카메라를 통한 발화점 탐색지원 기술을 탑재 '20년 LA 석유사업체회자현장에 시범투입
미 국	스네이크봇(2017)	캐네기 <u>멜론</u> 대학	육상, 수중	건축물 붕괴, 선박침몰	 뱀 모형으로 설계되어 협소 공간에 유연한 움직임을 통해 진입 '17년 멕시고 지진 현장에 투입
	Glider(2020)	美 해양 대기청	수상	자연재해	 기후위기 및 허리케인데이터 수집을 위한 수 중 무인이동체 해수면 아래 0.5마일(약800미터) 이내를 유영
	콜로서스(2019)	샤크 로보틱스	육상	대형 화재	전동식 물대포를 장착하고, 자력으로 소방호스를 끌고 접근하여 방수 2019년 파리 노트르담 대성당 화재에 유용하게 사용 탑재량 500kg, 원격 제어 거리 500m, 연속사용시간 12h
야 궵	INACHUS 프로젝트 트릭형 뱀로봇(2018)		육상	건축물 붕괴	 3개의 주행모듈을 2개의 관절구동 모듈로 연결하여 구성 전자코, 카메라, 열영상카메라, 마이크를장착하여인명탐지수행 꼬리를 이용하여 전원/통신수단으로 사용함
	수중 구조 드론(2021)	프운 郊	수중	해양 안전	 인고지능 알고리즘 기반의 CCTV 카메라로 물 위에 떠 있는 사람들의 움직임, 패턴, 위치 파악, 익사 조짐 등 위급 상황시 신호를 보냄 평소 수중 도킹 스테이션에서 대기하다가 위급 신호를 받고 익수자 위치 좌표로 출동
싱 가 포 르	사이보그 곤충(2021)	난양공대	육상	건축물 붕괴	 적외선 카메라와 센서로 사람을 탐지할 수 있는 칩을 살아있는 바퀴벌레에 이식 더듬이에 전류를 흘려 좌우 방향 조정하며 이동하여 생존자를 수색

	이동체	개발 기관	플랫폼	적용 재난	주요 내용
중국	PROJECTILE SHOOTING 화재진압드론(2022)	영(공중	고층빌딩 화재	• 고층빌딩에서 소화액을 살포하는 드론 • '22년 외벽화재 진압 실증
일	워터캐논로봇(2019)	시쌘미	육상	일반 화재	• 지상에서 소화액을 살포하는 UGV • 최대 80m 살포 가능
본	도호쿠대 바퀴형 뱀 로봇(2017)		육상	건축물 붕괴	• 길이 8m의 가늘고 긴 형태의 뱀형 로봇 • 후쿠시마 원전 사례를 모사한 실증단지에서 테스트 진행

국 내

- 현장의견보다 **연구자 중심의 기술력 향상 연구가 진행**되었으며, 현장적용 규제로 무인이동체의 **재난현장 적용이 부족**
 - 무인기(드론), 자율차·선박, 수중로봇 등 무인이동체를 중심으로 자율지능, 동력원, 항법, 센싱 등 **무인이동체의 핵심기술을 점진적으로 확보**해왔으나, 특정 임무보다 **범용적으로 활용하는 원천기술임**
 - 현재까지 추진된 무인이동체 기술개발은 성능 제고 및 다양한 영역으로 확산시키기 위한 원천기술확보 중심이었던 점과, 현장 적용에 따른 규제 등으로 현장대응에 특화된 무인이동체의 도입이 어려웠음
- 또한, 무인이동체 관련 부처별 분절적 R&D 사업을 추진해온 결과 과기 정통부는 개발기체의 현장적용 미미, 현장부처는 고도의 임무 수행력 부족 등 한계 발생
- (과기정통부 R&D 한계) 탐지 및 인식, 통신, 자율지능 등 요소기술별 개별 투자로 기술간 체계통합 효과 부족

- 기술분류별 핵심 요소기술을 확보하는 방식으로 연구개발을 수행해 왔으며, 실제 임무 적용은 R&D 이후 사업화 영역으로 별도로 구분
- 핵심 요소기술 확보연구와 현장적용을 위한 체계개발 연구가 **별도로** 추진되어 요소기술의 현장적용에 기술적 가극 발생
- 실제 과기정통부에서 추진 중인 무인이동체 관련 사업 현황*을 보면 기초연구 20%, 응용연구 49%, 개발연구 31%로 기초·응용연구에 69% 투자 중
 - * 무인이동체원천기술개발(R&D), DNA+드론기술개발 등 과기부 주관 무인이동체 관련 R&D 사업 5개 투자액 기준

< 과기정통부 주관 무인이동체 괸	반련 R&D 사업 분석 >
--------------------	----------------

구분	과제수	분야(연구수행)	기체개발	현장실증
무인이동체원천기술개발(R&D)	153 ('20-'23)	원천 (요소기술확보)	X (2개)	Δ
무인이동체미래선도핵심기술개발	190 ('16-'23)	원천 (요소기술확보)	X (1개)	Δ
DNA+드론기술개발	12 ('20-'23)	응용 (응용시스템 개발)	Х	0
불법드론지능형대응기술개발(R&D)	4 ('21-'23)	응용 (응용시스템 개발)	Х	Х
상시재난감시용성층권드론기술개발(R&D)	5 ('22-'23)	개발 (시제기 개발)	O (기술시연기)	Δ

- (현장부처 R&D 한계) 무인이동체 관련 R&D는 구매 및 시범운용을 통해 진행되었으나, 이는 기술 전문성이 확보가 어려우며 현장의 요구조건과 맞지 않는 경우가 많아 현장 활용성이 떨어짐
 - 특히, 극한환경 활용을 위해서는 고도화된 기술이 필요하나, 관련 R&D가 부족, 다부처 R&D를 통해 기술적 문제개선 및 현장활용도 제고 필요

< 국내 재난안전 임무형 무인이동체 개발 사례 >

이동체	개발 기관	플랫폼	적용 재난	주요 내용	
장갑로봇 소방차(2022)	로봇용합 연구원	육상	일반 화재	 화재진압 및 인명구조용 장갑형 이동체 원격방수, 차체 냉각, 장애물 파괴 및 절단 등 진압 가능 내열, 내충격성으로 차체 및 요구조자 보호 구난활동 중 베이스캠프 역할 요구조자 탐색기능 	
뱀형 로봇(2021)	로봇용 합 연구원	육상	건축물 붕괴	 주행 시 그리퍼를 모듈 내에 수납하고 작업시 그리퍼를 벌림 센서통합솔루션을 머리에 탑재 꼬리부는 약물, 물 등 구호물 전달 모듈이 탑재(유선형 운용) 직경 10cm의 협소 구간 통과 가능 	
배형 로봇	한컴 로보틱스	육상	건축물 붕괴	3개의 몸체 모듈로 구성되고, 각 몸체 모듈의 4면에 무한궤도를 장착한 뱀형 탐사 로봇을 개발 로봇의몸체모듈은피치(Pitch)및요(Yaw)운동이가능한 2자유도조인트(Joint)구조	
대몰자 탐지 드론	건설기술 연구원	공중	건축물 붕괴	통신단말기를 활용한 매몰자 탐지 드론을 개발 드론으로 현장 탐색하고, 3차원 건물 붕괴 형상 정보 획득 무선통신 기반으로 매몰자 위치를 탐지하여 12시간 내 구호지점 탐지	
크랩스터(2014)	선박해양 플랜트 연구소	수중	선박 침몰	 해저탐사를 위한 다관절 복합이동 해저중로봇 천해용(200m급) 크랩스터 CR200('13)에 이어 '16년 심해용(6000m급) CR6000 개발 세월호 참사 이후 수색에 투입 	
KIO-7\\(\frac{2}{2}\)2022)	해양 ICT 융합연구 센터	수중 중 용	해양 안전	해나고 밸정시 즉각 현장 투입 기능한 공중수중 기동 Rying AUV 기술 개발 및 '수중 로봇 공용 플랫폼 개발 연구를 통해 개발 HD급 수중 카메라를 통해 지속적인 광학 관측데이터를 확보 소나를 비롯한 수심 온도, 압력 gyra, USBL 등의 센사가 장착	
해검 (2020)	UG 넥스원	수상	해양 안전	 해양감시·정찰 용도로 개발 수상뿐 아니라 수중 감시정찰을 동시에 연동·운용할 수 있는 통합 운용제어기술을 개발 	
수난구조 공중 드론(2017)	SKT, 숨비	공중	해양 안전	 초소형 영상 생중계장비와 구명 튜브를 탑재 드론을 사람이 조정하는 방식으로 수영객의 조난 등의 긴급상황에 활용 	

Ⅲ. 임무 현황분석 및 시나리오 수립

1 재난안전 임무발굴

- □ 과기정통부, 무인이동체 연구개발 전략(안) 수립('23.12)
 - 과기정통부는 정부 주도의 **공공임무형 무인이동체를 개발**하고, 그 과정에서 **한계돌파를 위한 핵심 원천기술 확보**를 목표로 무인이동체 연구개발 전략 수립
 - 임무용 무인이동체 개발을 위해 **공공분야 중점임무 영역 선정 필요**, 무인이동체 및 각 분야 전문가 등을 대상으로 의견수렴 진행

※ 전문가 의견수렴

- 참여자 : 무인이동체 전문가 및 우주, 도시 등 응용분야 전문가
- 조사방식 : 대면회의(3회) 및 서면평가 - 전문가 위원회 대상으로 이동체 임무 도출 및 임무의 우선순위를 평가·취합
- 조사항목 : 이동체 임무별 우선순위 선별을 위해 공공성, 기술성, 시장성을 항목으로 설정하여 평가
- 조사결과 : 국가가 집중해야 할 공공임무 이동체의 우선순위 설문조사 결과 <u>①재난</u> 대응, ②국가안보, ③사회문제 순으로 우선순위가 높게 평가됨
- 전문가 의견수렴 결과, 정부가 추진해야 할 **중점임무로 "<u>재난대웅"</u>** 분야가 1순위로 선정되어 핵심 추진과제로 설정
 - 추진과제로는 재난안전 임무용 육해공 무인이동체 개발과 동력원 등의 핵심기술 확보가 발굴되었으나, 시급성, 중요성을 고려하여 재난안전 임무용 육해공 무인이동체 개발을 우선 추진

- □ 행안부, 『재난안전분야 중장기 중점기술 연구개발 로드맵('24~'29)』 발표('23.12)
 - 재난안전 정책 기술 변화의 대응을 위해 중장기적으로 확보가 필요한 현장중심 실용기술을 선정하여 지원과제 발굴 및 신규사업 기획 등을 위한 로드맵 수립
 - (주요내용) 자연재난, 사회재난, 안전사고 등 재난안전 관리 임무 수행을 위한 34개 중점기술* 선정 및 단계별 연구개발 계획 수립 * 국민이 체감하고 재난현장에서 요구하는 실용적 응용기술
 - (기대효과) 국민 현장 체감형 성과를 창출하기 위해 재난안전 핵심 정책과 연계한 현장 적용 중심 재난안전 투자 포트폴리오 강화
 - (활용계획) ^{매년}수요발굴·사업기획 → ^{매년}중기·시행계획 연계·활용
- □ 과기정통부^{주관부처} + 행안부^{협조부처} + 소방청·해경청^{수요부처} 연계포인트 발굴
 - 재난안전 주관·소관부처인 행안부에서 발표한 재난안전 R&D 로드맵 검토 결과, 무인이동체를 통한 재난현장 임무 발굴
 - [●]대형화재(신개념 소화탄, 드론), [●]대형붕괴(초소형 구조 로봇), ^❸수난 사고(공중/수중 구조 로봇) 등
 - 해당 로드맵에서 제기된 무인이동체 개발 수요를 과기정통부에서 추진하고자 하는 <u>재난안전 임무용 육해공 무인이동체 개발 사업기획</u> <u>에 활용</u>
 - 제시된 3가지 유형의 무인이동체에 대하여 산학연 및 현장 전문가 (소방, 해경 등) 대상 우선순위 설문조사 추진
 - 또한, 현장 전문가 대상으로 추가적인 서면 인터뷰를 통해 현장에 실질적 필요 정도와 요구사항을 파악

※ 전문가 의견수렴

○ 참여자 : 산학연 전문가 및 현장 전문가(소방, 해경 등)

- 산학연 전문가 : 총 100명 대상(산업계 29명, 학계 7명, 연구계 64명)

- 현장 전문가 : 총 100명 대상(소방 50명, 해경 50명)

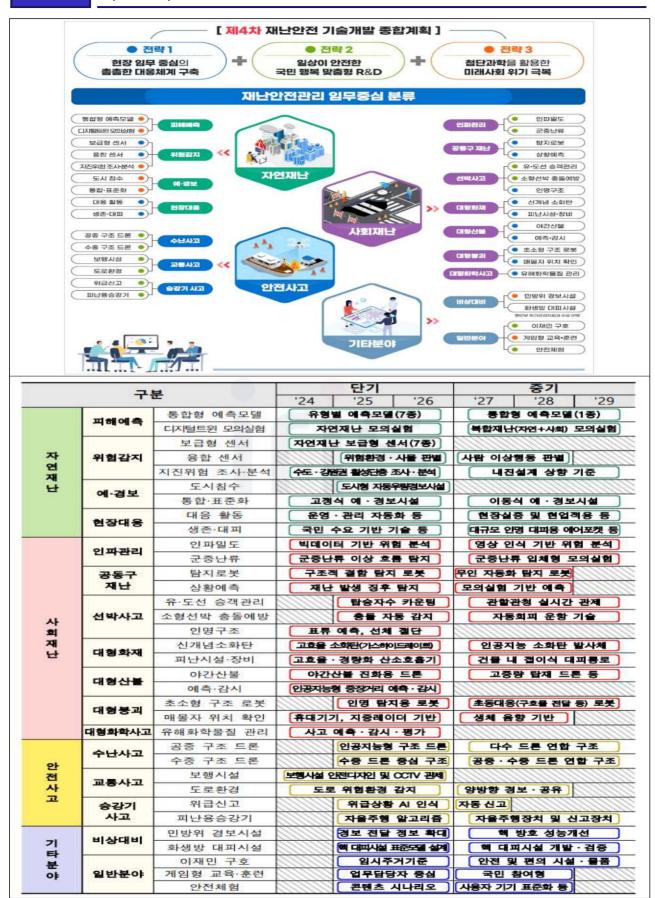
○ 조사방식 : 서면평가 및 인터뷰

- 전문가 대상으로 무인이동체 적용 임무별 우선순위를 평가 취합

○ 조사항목 : 무인이동체 임무별 우선순위 선별을 위해 공공성, 기술성을 항목으로 설 정하여 평가

- 공공성 : 무인이동체 투입 필요성/개발 시급성/국고지원 필요성

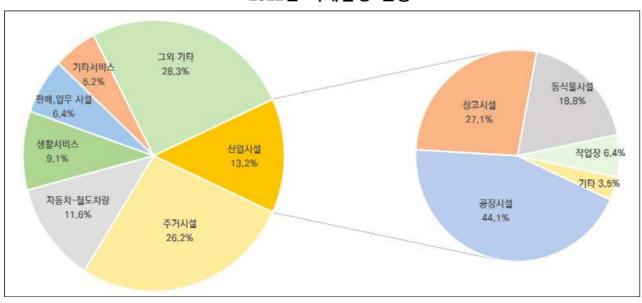
- 기술성 : 실증 및 현장적용 가능성/기술의 차별성/기술의 혁신성


○ 조사결과 : 무인이동체 적용 임무 우선순위 설문조사 결과 ①수난사고, ②대형화재, ③대형붕괴 순으로 우선순위가 높게 평가됨

후보군	산학연 전문가 평균점수(/30점)	현장 전문가 평균점수(/30점)	가중평균결과 (3:7)	순위
대형화재 진화 및 구조 임무	23	22	22.3	2
대형붕괴 요구조자 탐지 임무	24	21	21.9	3
수난사고 예방 및 구조 임무	23	23	23	1

- 우선순위 설문조사 결과를 토대로 **구체적 임무발굴**을 위해 과기정 통부, 행안부, 현장부처 등 **다부처 회의를 통해 임무수요 검토**
 - 임무수요 검토결과, 소방청과 해양경찰청에서 제기한 수요가 과기정통부 신규사업기획으로 적합할 것으로 판단, "(주관)과기정통부-(협조)행안부 -(수요)소방청·해경청" 다부처 협력사업으로 추진
 - * 행안부(협조부처) 무인이동체 현장실증 지원, 현장적용 관련 제도개선
 - ** 소방청·해경청(수요부처) 각 임무별 실증 및 리빙랩 참여, 현장 적용성 점검, 현장적용을 위한 매뉴얼 개선 및 현장적용 등
- 신규사업기획을 위해 소방청, 해양경찰청의 재난 현장임무에 대한 명확한 정의가 요구되며, 이를 기반으로 각 임무별 무인이동체 투입 시나리오 및 무인이동체 개발계획 수립 필요

참고 1 (행안부) 재난안전분야 중장기 중점기술 연구개발 로드맵('24~'29)



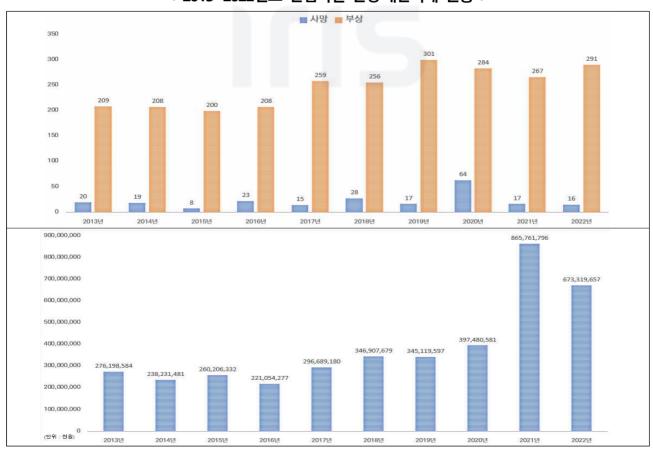
2 소방청 임무 : 화재 진압 후 실내수색용 무인이동체 개발

[1] 중대형화재 현황 및 대응 필요성

- □ 중대형화재 관련 사고발생 현황
 - 최근 5년간(2018~2022년) **대형화재 발생현황**을 보면, '18년 15건에서 '22년 24건으로 증가
 - 2022년 대형화재 사망자는 34명으로 **전년대비 28명(467%)이 증가**
 - 재산피해는 2021년에 5,624억 원으로 **전년대비 급증(328%)**했으며, 2022년에는 5,228억 원 발생
 - 최근 10년간(2013~2022년) 발생한 화재 중 **주거시설 다음으로 산업** 시설*에서 가장 많은 화재가 발생했으며, 산업시설 중에서도 **공장** 및 창고시설에서 화재 다수 발생³)
 - * 산업시설 : 공장시설, 창고, 작업장, 발전시설, 동식물 시설 등
 - 특히, 2022년 산업시설에서 발생한 화재 중 공장 및 창고시설은 총 3,768건으로 산업시설 발생화재 전체의 약 71%를 차지

< 2022년 화재발생 현황>

³⁾ 화재장소별로 전체 화재 412,573건 중 주거시설 110,567건(26.8%), 산업시설 54,051건(13.1%), 자동차, 철도차량 48,622건(11.8%), 생활서비스시설 40,927건(9.9%), 임야 24,442건(5.9%), 판매, 업무시설 23,765건(5.8%) 순 (출처: 2022년 화재통계연감)



< 2022년 공장시설 및 창고시설 화재발생 현황 >

공장시설(100건	· 이상만 나열)	창고시설		
발화장소	화재건수	발화장소	화재건수	
금속기계 및 기구공업	738	냉장, 냉동창고	99	
방직공업	138	66, 6 6 6±	99	
식료품공업	189	차그 무프되자스	875	
전기, 전자공업	114	창고, 물품저장소	673	
제재 및 목공업	133	하역장	5	
화학공업	147	4.50	5	
그 밖의 공업	732			
광업, 석유공업, 요업 및 토석공업, 인쇄업 등	100건 이하	기타창고	455	
소계	2,334	소계	1,434	

- 또한, 산업시설 화재로 인한 **인명·재산피해도 매년 증가**하고 있는 상황
 - **(인명피해)** 2013~2022년까지 산업시설 화재로 인한 사망자는 227명, 부상자는 2,483명 발생⁴⁾
 - (재산피해) 2013~2022년까지 산업시설에서 발생한 피해액은 약 3조 9,209억 원으로 가장 많은 피해가 발생했으며, 전체 피해액의 60.1% 차지

< 2013~2022년도 산업시설 인명·재산피해 현황 >

⁴⁾ 최근 10년간 화재로 인한 전체 사망자 3,172명 중 산업시설은 227명으로 7.2% 차지, 전체 부상자 19,697명 중 산업시설은 2,483명으로 12.6% 차지 (출처: 2022년 화재통계연감)

- 대형공장·물류센터의 경우, '대형화재 화약고'라 불릴 만큼 화재 위험성이 높아 화재 발생에 신속 대응할 수 있는 대책마련 필요
 - 공장 및 물류센터의 특성상 화재발생 시 대형 인명·재산피해를 동반한다는 점에서 대책 마련 시급
 - * 최근 3년간(2020~2022) 경기도 물류센터 20여 곳에서 화재가 발생해 70여 명의 사상자, 6,251억 원의 재산피해가 발생한 것으로 나타남

□ 중대형화재 관련 대응 시스템 현황

- 소방청 대응 매뉴얼인 재난현장 표준작전절차(SOP)5) 분석결과 **현장** 인력의 대략적 상황판단을 통해 소방대원이 투입되므로 위험도가 높음
 - 현장지휘팀은 선착대/후착대로 운영되며, 지휘관은 화재규모, 구조대상자 상황, 연소확대 여부 등 현장상황을 직접 판단, 안전점검관은 건축물 붕괴 및 낙하물 등 현장 위험요인 인지 및 안전평가 진행
 - 재난현장 종합적 정보*를 기반으로 현장상황 평가를 통해 대응방법을 결정 하는 방식으로 기존 자료 및 현장 투입대원의 정보력에 의존하며, 실시간으로 내부상황 파악 어려움
 - * 재난피해 당사자, 시설 관계자, 소방 및 지자체 보유 자료 등 다양한 방법 으로 정보 수집

※ 소방 현장대응 인력·장비 현황

□ 인력현황⁶⁾

- 소방공무원 1명이 책임져야 하는 인구 수는 780명, 2인 1조로 화재현장에 투입되는 시스템이 제대로 지켜지지 않고 있으며, '23년 2월 도입된 '신속 동료구출팀(RIT) 제도'는 인력 부족으로 실효성 있게 운영되지 못하는 상황
- 지방비 비중 압도적인 소방특별회계로 인해 재정자립도가 낮은 지자체는 인력 충원 및 소방장비 구매가 어려워 시도별 편차 발생

<인터뷰 자료>

- ▶김○○ / 전국공무원노조 소방본부장
- 6만 8천명('24.2월 기준)의 소방관이 국가직으로 전환됐지만 인력 충원은 쉽지 않은 게 현실, 차량마다 한 명씩 운전요원을 배치하는 것조차 불가능한 실정
- ▶이○○ / 울산 남울주소방서 소방위
- 국가직으로 바뀌었어도 소방 단독 예산이 없고, 시에서 예산을 쓰기 때문에 인사나 예산은 시·도지사 쪽으로 규정을 두고 있는 상황

□ 장비현황7)

- (소방장비) 펌프차, 물탱크, 고가차(소형사다리 포함), 화학차(화생방대응차 포함), 조명배연차, 구조차, 구급차, 재난지휘차, 화재조사차, 선박 및 헬기, 무인 방수차, 재난현장지원차, 이륜차 등
- (개인보호장비) 공기호흡기, 방화복, 방화헬멧, 방화신발, 방화장갑, 방화두건, 라이트라인* 등
 - * 위급한 상황에 놓인 소방관이 신속하게 대피할 수 있도록 길을 밝히는 장비로 개발되었으나, 내열성 한계는 70~125°C에 불과하여 화염이 치솟는 화재현장에서는 사용불가(미국라이트라인의 경우 내열성 한계 500~700°C)
- ⇒ 재난의 대형화·복합화로 인력·장비에 대한 현장요구 범위가 확대됨에 따라 실효성 있는 대책 마련 시급
- 중대형화재 발생 시 진압 및 수색·구조 **활동환경이 열악**하고, 행동 장애가 많아 **2차적인 재해발생에 의한 현장대원의 안전사고 심각**
 - 대형공장 및 물류센터 건물구조에 따른 **급격한 연소 및 붕괴우려**는 공격적 **진압활동에 장애요인**으로 발생
 - 특히, 초진 이후 인명수색 및 내부 진화작업을 위해 **현장에 진입한** 소방대원들의 건물붕괴, 재발화 등으로 인한 순직사고 지속적 발생
 - * 소방청이 집계한 '위험직무 순직 현황'에 따르면 최근 10년간(2014~2023) 현장에서 순직한 소방대원은 총 40명, 그중 화재 진압 소방대원 총 13명으로 가장 많음
 - 최근 발생하는 중대형화재는 복합적 원인 속에 소방현장 대응력에 대한 한계를 노출

※ 국내 주요 중대형화재 2차재해 사례

① 쿠팡 물류센터 화재 수색진입 소방대원 1명 사망사건

- ▶ (**사고개요**) 2021. 6.17. 5:35 경기 이천시 쿠팡 덕평 물류센터 화재발생
- ▶ **(인적피해)** 사망 1(소방대원)
- ▶ (동원세력) 인원 416명, 장비 139대 투입
- ▶ (상황종료까지 소요시간) 2021. 6. 17. 5:35 ~ 2021. 6. 22. 16:12, 114시간 37분 소요
- ▶ (사망경위) 화재 신고 접수 후 대응 2단계 경보를 발령하여 1차 진회를 마친 뒤 인명 검색 과 잔불 정리를 위해 소방대원 4명 지하 2층에 투입, 재발화로 고립돼 1명 순직

② 냉동창고 화재 수색진입 소방대원 3명 사망사건

- ▶ (**사고개요**) 2022. 1.5. 23:46 경기 평택시 청북면 고렴리 냉동창고 신축공사장 화재발생
- ▶ **(인적피해)** 사망 3(소방대원)
- ▶ (**동원세력**) 인원 189명, 장비 58대 투입
- ▶ (상황종료까지 소요시간) 2022. 1. 5. 23:46 ~ 2022. 1. 6. 19:19 , 19시간 33분 소요
- ▶ (사망경위) 다량의 가연성가스가 축적된 상태에서 순간적인 화재 가스 발화, 7시간 만에 초 진 성공 후 건물 내 인명 수색을 위해 소방대원 5명 투입, 재발화로 2명은 자력 대피했으나, 3명은 현장에서 고립돼 순직

③ 문경 공장화재 수색진입 소방대원 2명 사망사건

- ▶ (**사고개요**) 2024. 1.31. 19:47 경북 문경시 신기동 육가공공장 화재발생
- ▶ (**인적피해**) 사망 2(소방대원)
- ▶ (**동원세력**) 인력 348명, 장비 63대 투입
- ▶ (상황종료까지 소요시간) 2024. 1. 31. 19:47 ~ 2024. 2. 1. 0:20 , 4시간 33분 소요
- ▶ (사망경위) 화재 발생 당시 대응 2단계를 발령하고 1차 진화작업 후 화점 확인 및 인명검색을 위해 소방대원 4명 투입, 재발화 및 붕괴로 인해 2명이 고립돼 순직

AS-IS(현대응체계 한계)

▶ 실내상황 : 대피자 증언에 의존

▶ 진입여부 : 건물 외부에서 판단

▶ 화점/인력수색 : 소방대원 직접수색

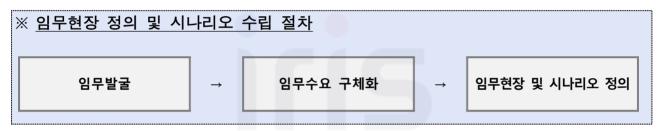
TO-BE(무인이동체 적용시 개선)

▶ 실내상황 : 무인이동체가 진입후 가시화

▶ 진입여부 : 실내정보 기반 진입여부판단

▶ 화점/인력수색 : 드론, UGV 1차 수색

⇒ 대형재난 상황에서 소방인력 및 장비의 현장 접근성 한계를 과학기술적으로 극복하고, 이를 통해 2차재해 예방 및 현장대원 안전성 확보



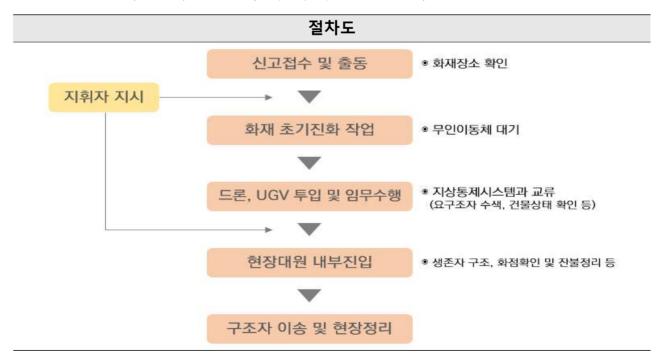
□ 소방임무용 무인이동체 대응 필요성

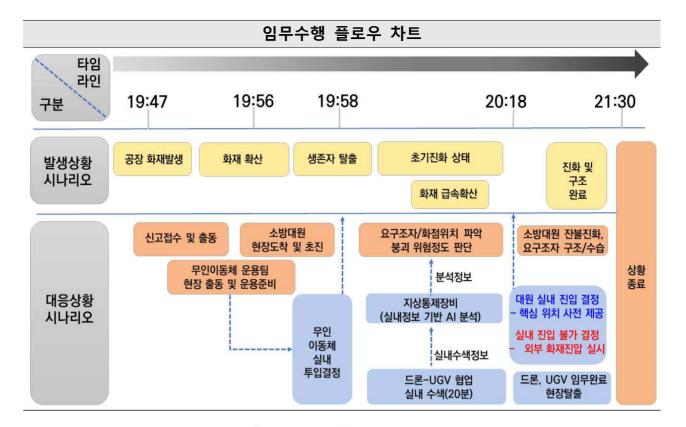
- 화재현장의 연무, 비산먼지 등 **악조건에서도 정밀운항**하고, 고온에 강건한 육공협력 무인이동체 개발 필요
 - 화재현장 임무용 무인이동체 개발을 통해 **재난 접근성을 향상**시켜 **현장대원의 안전성을 확보**하고, 실시간 정보제공 및 신속 대응을 통한 **인명·재산피해 저**감

(2) 무인이동체 임무투입 시나리오

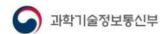
○ (개요) 소방현장에 대한 이해가 높은 소방청 직원 및 국립소방연구원 소속 연구자와 기술전문가 인터뷰 등을 통해 임무현장을 정의하고, 무인이동체 투입 시나리오 수립

 ○ (임무현장 정의) 공장 및 물류센터 등 중대형화재 초기진화 현장(실내 복사열 200℃ 이상)으로 연무, 비산먼지, 고습도, 통신두절 등 극한환경을 정의하고, 무인이동체 운용체계 수립

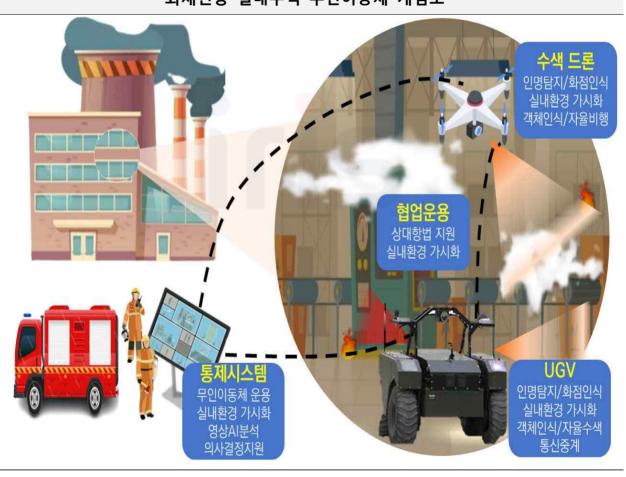

구분	내용
현장 환경	- 화재규모 : 공장, 물류센터 등에서 발생한 중대형화재 - 온도 : 복사열 약 200℃ * 이격거리 2m에서의 최대 복사열은 약 1.8 kW/m², 온도 환산 시 약 150℃ ** (소방청의견) 실험을 통한 평균값이며, 표준적 기준 제시에 한계가 있음. 온도조건은 높으면 높을수록 좋음, 그 외 대류열에 대한 제공 가능한 정보 및 측정치는 부재 - 연무상황 : 가시거리 0.5m~1m
운용 체계	- 습도 : 복사열 기준 약 200℃에서 수증기 포화상태(100%) - 무인이동체 투입시 지휘체계 : 무인이동체 개발 후 실증과정을 통해 구체적 체계 마련 - 드론, UGV 투입대수 : (UGV 1대 + 드론 4대)가 하나의 시스템이며, 화재 및 현장규모에 따라 투입대수 조정 - 관리체계 : 드론 조종 1인(UGV 자율주행), 지상통제장비는 현장에서 운용하되 이동통신을 이용하여 소방서에 영상송신


○ (운용개요) 대형화재 발생시, 화재 초기진압 후 드론과 UGV를 투입해 생존자 수색, 화재진화 완료 여부 확인, 화재로 인한 건물손상확인, 진입을 위한 안전성 확보 여부 등을 확인

무인	이동체 협력체계	운용 시나리오				
1	드론	- 영상·관성항법을 통해 연무, 비산먼지 가득한 실내현장에 투입 - 소방관이 직접 조종하나 충돌회피 등 일부 자율비행 가능, 드론간 상대항법을 통해 안정적이면서도 신속하게 화재현장 파악 - 임무장비를 활용하여 요구조자 위치정보 및 실내영상 취득 후 UGV 또는 지상 운영장비로 전송 - 20분간 임무수행 후 출발지점으로 자동복귀				
2	UGV	 드론과 함께 화재현장에 투입되며, 소방관 조종없이 자율주행으로 험지 이동가능(학습기반 주행기술, 충돌방지기술 등 보유) 실내로 이동하여 드론의 상대항법을 지원하고, 지상운용장비와 드론간 통신선 확보 임무 수행 동시에 고성능 장비를 통해 현장영상 취득하고, 생존자 등을 탐색 1시간 임무수행 후 출발지점으로 자동복귀 				
3	지상통제장비	- 드론과 UGV의 협력운용을 지원하는 지상 운영시스템으로 무인 이동체에서 전송되는 임무정보(EO, IR, Lidar, Radar, 생체신호, 초음파센서)를 융합해 통합영상을 제공 - 영상 AI 분석을 통한 실내 피해현황 분석, 안전진입여부 등을 판단				


○ (운용 시나리오) 구조 골든타임 및 현장대원 안전성 확보를 위해 화재 초기진압 이후 소방대원 투입 전 드론과 UGV의 협력운용을 통해 안전·신속·정확한 실내 수색·구조 프로세스 운용

- ① (화재발생 직후 신고접수 및 출동) <u>통합지휘차량</u>을 필두로 대원수송 차량, <u>첨단장비 운송차량</u>, 펌프차, 물탱크차, 화학차, 구급차 등 각종 차량 화재현장으로 이동
 - (통합지휘차량) 관할도시의 각종 폐쇄회로 영상장비와 센서를 실시간으로 공유하는 시스템 보유, 화재현장 모니터링을 통해 대원들에게 정보 제공
 - (첨단장비 운송차량) 드론 및 UGV 등 임무용 무인이동체 유닛 적재
- ② (화재발생 10분 후 화재 1차 진화작업) 화재현장으로 출동한 소방대원들은 펌프차, 물탱크차 등을 활용하여 건물 외부에서 화재 초기진화작업 실시, 무인이동체 운용팀은 드론 및 UGV 현장투입 준비
 - 불확실한 현장생존자의 중언(실내 요구조자, 화점, 내부구조 등)에만 의존하지 않고 무인이동체를 통해 안전·신속·정확한 실내수색후 후속작전 추진


- ③ (화재발생 15분 후 무인이동체 투입) <u>드론과 UGV 실내 투입</u>, 무인이동체 운용팀은 드론 운용 및 지상통제장비를 통한 <u>현장정보(요구</u> 조자 위치, 건물붕괴요소 등) 분석, 의사결정지원
 - (드론) 화재현장 특성상 짧은 가시거리 극복을 위해 각종 임무장비를 탑재, 사람이 접근하기 어려운 곳까지 빠르게 이동하며 실내현장의 상황을 UGV 또는 지상통제장비로 전송, 1대당 20분 임무수행 후 복귀
 - (UGV) 자율주행 및 험지주행이 가능하며, 드론 대비 고중량·고성능 임무장비가 탑재되어 드론의 상대항법, 통신연결을 지원하면서 실내 환경 가시화 및 요구조자 탐지 등 약 1시간 연속임무 수행 후 복귀
- ④ (화재발생 40분 후 구조대원 내부진입) 무인이동체를 통해 파악된 건물 내부정보를 통해 <u>붕괴 위험정도를 판단</u>하여, <u>요구조자 및 화점</u> 위치에 구조대원 신속 투입
 - 자율협력 무인이동체를 통한 사전수색으로 최적의 구조경로, 잔불 진화 경로를 제공받은 구조대원이 신속한 실내작전 수행
 - 진입불가지역, 일부붕괴로 장애물이 있는 공간 등 **무인이동체가 사전** 제공한 실내정보 바탕으로 안전한 구조활동 수행
- ⑤ (화재발생 100분 후 진화 및 구조완료) 실내에 투입된 대원들은 생존자 후송 및 잔불진화 등 현장정리 후 상황종료
 - * 구조완료 시기는 예시이며, 소방대원의 <u>현장작전 완료 소요시간은 화재현장의 범위</u> <u>와 화재정도에 따라 상이</u>

(3) 임무형 무인이동체 도출

- (개요) 현장부처와 사업기획 총괄위원회 및 기술기획위원회에 속한 전 문가 의견수렴을 통해 소방임무수행을 위한 무인이동체 협력체계 도출
- (도출내용) 대형화재 초기진화 현장(실내 복사열 200°C 이상)에서 화점·생 존자 수색, 안전확인 등 임무를 협력하는 드론, UGV 임무수행 체계 개발

무인 협업운용 체계 ① 실내수색 드론 ② UGV ③ 지상통제시스템 ④ 통신시스템 화재현장 실내수색 무인이동체 개념도

3 해양경찰청 임무 : 근해 해난사고 신속대응 무인이동체 개발

[1] 연근해 사고현황 및 대응 필요성

- □ 최근 5년간 수난사고 구조건수는 5만 2,045건으로, 2020년부터는 6월부터 사고건수가 급격히 증가해 9월까지 이어짐
 - 수난사고 원인으로는 건물이나 도로 등의 시설물 침수가 3,644건 으로 가장 많았고, 물놀이 익수(2,816건), 수상표류(1,835건), 차량 추락·침수(1,682건) 순⁸⁾
- □ 해양 레저·관광 활성화를 위한 다양한 정책으로 매년 연안이용객 증가 추세이며, 특히 연안사고는 타 사고 대비 사망률이 높아 안전관리체계의 혁신 필요
 - 연안사고는 최근 5년 총 3,266건으로 **연평균 653건 발생**, 사망자는 매년 100명 이상 발생하며 **사망률도 지속적으로 15%이상 달함**

< 주요 사고별 사망률 >

78		사고건수 대비					
구분	2018년	2019년	2020년	2021년	2022년	평균	사망자수 비율(%)
연안안전사고	759	721	602	717	575	675	16.6
555572	(124)	(129)	(97)	(109)	(100)	(112)	10.0
교통사고	217,148	229,600	209,654	203,130	196,836	211,274	1.5
╨충작고	(3,781)	(3,349)	(3,081)	(2,916)	(2,735)	(3,172)	1.5
선박사고	2,671	2,971	3,156	2,720	2,863	2,876	3.8
현극적포	(102)	(98)	(126)	(120)	(99)	(109)	3.0

* 자료: 해양경찰청

○ 연안안전사고⁹ 예방을 위해서는 지속적인 순찰을 기반으로 현황 파악, 시설 점검 및 계도 등 **능동적 대응이 필요**하나, **인력 부족과 넓은 관할** 구역¹⁰⁾으로 인하여 현실적으로 어려운 상황

⁸⁾ 소방청 보도자료 참고

⁹⁾ 연안사고는 개인 부주의에 의한 사고가 많은 부분을 차지하여 지속적인 순찰·계도가 필요

¹⁰⁾ 전국 해안선 11,730km / 해경 파출소 1개소 당 약 121km의 해안선 관리

- 현재 파출소의 현장 접근성을 고려할 때 **위험구역**¹¹⁾에서 익수사고 발생시 파출소의 즉각적인 구조 대응이 현실적으로 어려움
 - 익수사고시 구명장비가 없을 경우 생존을 위한 **골든타임은 5분 미만** 임을 감안, 현재의 순찰체계·인력으로는 선제적·능동적 대응에 한계

<	해양경찰청	파출소	관할	구역	혀화	>
•	410020					

지방청	관할 해안선(km)	파출소(개소)	파출소당 관할 해안선(km)	위험구역(개소)	파출소당 위험구역(개소)
중부청	2,145	24	89.4	208	8.7
서해청	5,770	25	230.8	134	5.4
남해청	2,521	24	105.0	131	5.5
동해청	883	18	49.1	244	13.6
제주청	461	6	76.8	103	17.2
합 계	11,780	97	평균 121.4	820	평균 8.5

* 자료 : 해양경찰청

- □ 또한, 최근 몇 년 사이 기후변화로 인해 바다 환경이 변하면서 돌풍이 늘고 파도가 세져 어선 전복 등 해양사고 급증
 - 2022년 해양사고는 2,863건으로 전년(2,720건)대비 **5.3% 증가했고** 그 중 어선 사고가 1,718건(60%)으로 가장 많은 비율을 차지
 - 바다 및 해양의 특성상 바람이 강하고 파도가 높으며 해양 수색 시 유속이 빠르고 시야가 탁해 수중 가시거리가 짧고 수온이 낮아 구 조대원의 구조 작업이 어려움
 - 급격한 해양 기상변화로 예기치 못한 구조요청 발생, 풍랑주의보 상황으로 안전하고 신속한 구조에 난항
 - * '24.3.9일 통영에서 급격한 기상악화로 어선침몰, 급격한 물살로 조난자가 광범 위하게 흩어져 신속한 수색과 구조가 어려워 선원 전원 사망 및 실종
 - (근해사고) 해상상태 4의 극한 해양환경에서 유인세력이 도달하기 전 초동조치를 위한 공중-수상 협업 무인이동체 개발 필요

¹¹⁾ 안전사각지대인 연안위험구역과 파출소간 평균 거리는 약 9km(평균 차량 이동시간 약 13분)

※ 국내 주요 선박사고 사례

1 2. 15.(목) 완도, 양식장관리선 (청해호) 전복 * 풍랑주의보

- ▶ **(사고개요)** 2. 15.(목) 13:10 완도군 양도 서방 0.5해리 해상 침몰
- ▶ (인적피해) 생존구조 3, 시망 2, 실종 1명 ▶ (동원세력) 함 46척 항 2대
- ▶ **(선박제원)** 청해호 (6.67톤, 양식장관리선, 송지선적, **승선원 6명**)

2 2. 15.(목) 서귀포, 화물선 (금양 6호) 침수 *풍랑 경보

- ▶ (사고개요) 2. 15.(목) 21:52경 마라도 남방 25해리 침수 신고(VHF 및 DSC)
- ▶ (인적피해) 구조11명(생존 11) **▶ (동원세력)** 함5척 항2대
- * 5001함 단정, 악천후 속 현장 도착, 구명줄 이용 승선원 전원(11명) 구조 ⇒ 특진1, 특승1, 표창2
- ▶ **(선박제원)** 금양6호 (1,956톤, 부산선적, 화물선, **승선원 11명**, 철판적재)

3 3. 1.(금) 제주, 어선 (2008 만선호) 전복 *풍랑주의보

- ▶ **(사고개요)** 3. 1.(금) 07:24경 마라도 서방 11해리 해상에서 전복
- ▶ (인적피해) 생존구조 7명, 사망 2, 실종 1명
- * 77덕성호, 4명 구조(생존3 심정지1) / 영재호, 구명뗏목탑승 4명 구조 / 77덕성호 표류 중 한1 발견
- ▶ (선박제원) 2008만선호(33톤, 근해연승, 서귀포선적, **승선원 10명 <한5, 베5>**)

4 3. 9.(토) 통영, 어선 (2해신호) 전복 <u>* 풍랑주의보</u>

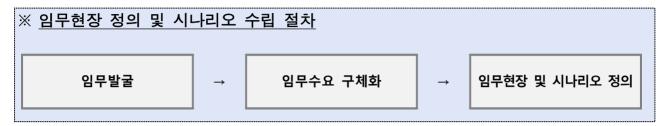
- ▶ **(사고개요)** 3.9.(토) 06:29경 연락두절 신고 →욕지도 남방 37해리 전복발견
- ▶ (인적피해) 사망 4. 실종 5명
- * 3. 9. <mark>수중수색 중 3명(한1, 인2) 발견</mark> / <mark>북서방 7해리 해상(인1) 발견</mark> / 10일간 수색, 추기발견X
- ▶ **(선박제원)** 2해신호 (20톤, 근해연승, 제주선적, **승선원 9명<한2**, 인니7>)

5 3. 14.(목) 통영, 어선 (102해진호) 침수·침몰 <u>*파고 1∼1.5m</u>

- ▶ (사고개요) 3. 14.(목) 04:12경 욕지도 인근 침수 중 신고 → 침몰 확인
- ▶ (인적피해) 생존구조 7, 사망 4명
- * 3. 14. 인근 101해진호, 구명뗏목탑승 인니7구조, 표류중 한1발견 / 구조대, 표류 한2 발견, 3. 19. 민간잠수사 기관실 내 기관장(한)발견·인양
- ▶ **(선박제원)** 102해진호 (139톤, **쌍끌이저인망**, 부산선적, **승선원 11명**)

6 3. 17.(일) 포항, 어선 (동현호) 전복 <u>*파고 2.5~3m</u>

- ▶ (사고개요) 3. 17.(일) 02:44경 포항 구룡포 인근 해상에서 전복
- ▶ (인적피해) 생존구조 5, 실종 1명
- * 3.17. 대양호, 표류중 인니1구조/1008합단정, 동현호위한1·외1구조 / 1008합중특단수중수색중 한2구조
- ▶ **(선박제원)** 동현호 (9.77톤, 연안자망, 구룡포선적, 승선원 6명<한3, 인니3)

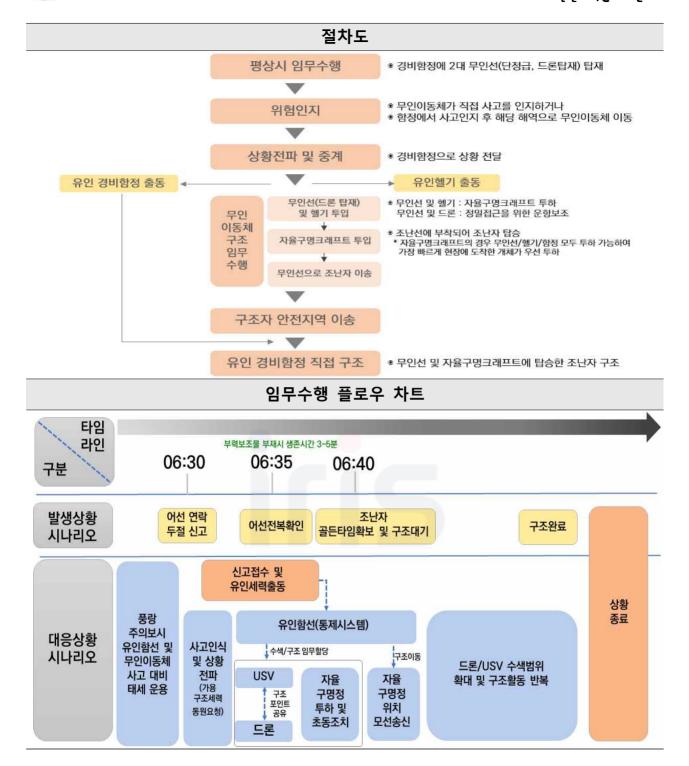


[2] 무인이동체 임무투입 시나리오

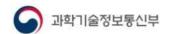
○ (개요) 해경현장에 대한 이해가 높은 해경청 직원 및 기술전문가 인터뷰 등을 통해 임무현장을 정의하고, 무인이동체 투입 시나리오 수립

○ (임무현장 정의) 12마일(19.3km) 이상의 근해에서 풍랑주의보 등 악기 상 상황에 신속 대응가능한 무인이동체 운용체계 수립


구분	내용					
현장 환경	- 해상상태 : 4 (WMO 기준 파고 1.25 ~ 2.5m) - 풍속 : 13m/s 이하 - 고도 : 150m 이하 - 임무범위 : 12마일(19.3km) 이상					
운용 체계						
통신 요구 조건	- 최대 임무거리 20km이내에서 드론-무인선-자율구명정 등 최대 20개체 대한 조종-임무 통신을 제공 - 최소 요구 영상품질: 720p(HD) - 최소 요구 영상개수: 10개 이상 - 주파수: 5,030~5,090 / 5,090~5,150MHz 대역 가능					



○ (운용개요) 드론을 탑재한 무인선이 3천톤급 유인 경비함정에서 진회 수하며 근해 사고에 대비, 사고 발생시 현장으로 신속 이동 및 조난자 수색 후 자율구명정 투하하여 구조


무인	이동체 협력체계	운용 시나리오
1	드론	 무인선 또는 함정에서 이착륙/충전하며, 사고 발생시 현장으로 신속 이동 탑재된 임무장비를 통해 조난자를 수색하고, 위치정보를 무인선 및 함정으로 전송하며 통신중계 등 협업임무 수행 무인선으로 조난자 구조시 시야확보 및 자율구명정 운항보조 소형 자율구명정의 경우 드론에서 투하가능
2	무인선	 함정에서 진회수되며, 드론 이착륙, 충전시스템 보유하여 사고 발생시 드론과 함께 현장으로 신속 이동 해상상태 4(풍랑주의보)에서 구조대원 안전확보 등 유인선을 대체하기 위해 무인체계로 자율운용 탑재된 임무장비를 통해 조난자 수색 및 자율구명정 투하, 조난자 정밀접근을 위한 운항보조 자율구명정으로 조난자 구출 후 무인선으로 복귀, 구조인명 무인선 승선
		<소형> - 연해 및 갯벌에서 사고 발생시 드론 또는 무인선에서 투하, 운항보조 - 조난자 정밀접근 및 예인하여 무인선으로 유도
3	자율구명정	<중형> - 근해에서 사고 발생시 무인선, 유인헬기, 유인함정 등 모두 투하 가능 - 조난자 정밀접근 후 팽창하여 조난자 구조, 드론 및 무인선의 운항보조를 통해 무인선으로 복귀 또는 안전지역으로 이송 후 유인세력의 구조대기
4	통신/관제 시스템	- 유인 경비함정(모선) 배치되어, 드론-무인선에 대한 통합관제를 수행 - 임무영역에서 타 비행체나 선박 등 도시 및 모니터링 - 드론 및 무인선 영상, 경비함정이 보유한 영상정보를 통합해 전송 - 드론 영상 AI 분석, 해양환경변화에 따른 실시간 연안위험도 및 위험구역별 사고발생 사전예측 등 수행 - 무인이동체에 임무 명령 및 제어 - 필요시 완전자율로 운용되는 드론, 무인선, 자율구명정에 대한 반자동 혹은 수동조종

○ (운용 시나리오) 해상상태 4 수준의 근해 해상에서 유인 구조세력을 대체할 수 있는 드론, 무인선, 자율구명정 등 무인이동체 자율협력운용을 통해조난자를 신속히 수색・구조

- ① (신고접수 직후 무인이동체 투입 및 상황전파) 풍랑주의보 상황에서 어선 연락두절 신고접수시 경비함정에서 무인선 진수 및 드론 이륙*, 무인이동체가 신속히 현장으로 이동하여 사고인지 및 상황전파
 - * 경비함정 또는 무인선에서 이착륙하여 사고현장으로 이동

- 풍랑주의보 등 **악기상 상황**에서 높은 파도와 급격한 물살로 인해 구조대원 출동이 쉽지 않으나, **무인이동체를 활용한 신속대응**을 통해 대원의 안전성과 골든타임 확보
- ※ (신고접수 5분 후) 유인 구조세력 출동 및 무인이동체 수색·구조임무가 동시 진행되며, 무인이동체는 임무 반복수행
 - ② (유인 구조세력 출동) 무인이동체로부터 획득한 정보를 바탕으로 경비함정은 유인헬기 구조요청과 동시에 사고현장으로 이동, <u>무인</u> 이동체는 현장정보를 실시간으로 전송
 - ③ (무인이동체 구조임무수행) <u>드론-무인선-자율구명정</u>은 유인세력이 도착하기 전까지 <u>협력운용</u>을 통해 넓은 범위의 조난자 수색·구조 등 초동조치 수행
 - (드론) 조난자 수색 및 위치정보를 무인선과 함정으로 전송, 무인 선 구조임무 수행시 시야확보 및 무인선이 투하한 자율구명정 운항 보조, 총 운행시간은 1.5시간으로 무인선에서 자동 충전을 통해 연 속 임무수행하여 함정 복귀로 인한 수색시간 감소 최소화
 - (무인선) 사고현장을 수색하며 드론과의 협업을 통해 조난자 위치로 근접이동 후 자율구명정 투하, 자율구명정의 조난자 정밀접근 운항보조 및 무인선 유도, 구조인명 무인선 숭선
 - (자율구명정) 무인선, 유인헬기, 유인함정 등 모두 투하 가능하며, 가장 빠르게 현장에 도착한 구조세력이 투하, 드론 및 무인선의 정밀접근 유도를 통해 조난자 근처까지 이동하여 팽창, 조난자 탑승 후무인선 또는 유인세력의 구조 대기
- ④ (신고접수 30분 후 구조대원 투입) <u>무인이동체의 초동대처</u>로 구조 대기중인 조난자들을 직접 구조하여 안전지역까지 이송

- 악기상 상황에서도 운용가능한 자율협력 무인이동체를 통해 골든 타임 내 조난자 수색 및 구조가 가능하며, 현장대원의 안전하고 신속한 구조활동 지원

(3) 임무형 무인이동체 도출

- (개요) 현장부처와 사업기획 총괄위원회 및 기술기획위원회에 속한 전 문가 의견수렴을 통해 해경임무수행을 위한 자율협업 무인이동체 도출
- (도출내용) 해상상태 4 수준의 근해 해상에서 자율협력하여 조난자를 신속히 수색・구조하는 드론, 무인선, 자율구명정과 임무수행 체계 개발

무인 협업운용 체계

① 해양수색용 드론 ② 수색/구조 무인선 ③ 자율구명정

④ 통신/관제시스템

근해 해양사고 대응 무인이동체 개념도

Ⅳ. 사업 추진계획

1

개요

- □ (사업명) 재난안전 임무용 육해공 무인이동체 개발(R&D)
- □ (사업비) 총 400억 원('25년 60억 원)
- □ (사업기간) '25년 ~ '29년(총 5년)
- □ (추진근거) 과학기술기본법 제11조(국가연구개발사업의 추진)
- □ 상위계획

구분	제5차 과학기술 기본계획	제4차 재난 및 안전관리 기술개발 종합계획
부처	관계부처 합동	관계부처 합동
추진 배경	기술개발 중심의 기존 과학기술 정책에서 국가 문제해결로 외연 확장 추진	현장에서 활용될 수 있는 실요 기술을 개발 하여 현장 요구 맞춤형 기술개발 추진
목적	 과학 기술기반 미래위험 대응 및 안전사회 구현 우주항공해양, 첨단로봇·제조, 인공지능 분야 등 국가 전략기술 확보 	• 재난안전 문제해결, 미래위험까지 대 비한 실용적 기술개발 - 실사구시가 가능한 R&D 성과 창출 을 통해 재난안전 현장 문제 해결
관련 내용	미래 위험에 대응하고 안전한 사회구 현을 목표로 재난/위기 대응 현안 해 결을 강조 과학기술을 통하여 미래위험에 대응 하고 안전한 사회를 구현 재난안전데이터 공유 플랫폼 운영 피해저감 기술 개발 등 재난안전 관리 체계를 구축 재난 각본 개발 등 미래위험 관리	 재난안전 R&D 협업체계 강화 재난안전 현장의 즉시 보급과 신속한 기술개발 체계 현장의 난접근성을 해소 및 고위험현장 진입을 위한 이동체 개발 제시 다양한 난접근성 화재에 대처 할 수 있는 무인능동 진압체계 개발 화재진압/인명구조 임무 등을 위한 장갑형 로봇, 비행정찰 이동체, 협소 공간 탐지 이동체 등 개발

□ 사업목적 및 지원대상

○ (목적 및 내용) 대형화재 초기진압 후 현장 탐색 및 요구조자 수색, 연근 해 해난사고 발생 시 신속대응 및 구조를 위한 육해공 무인이동체 개발 을 통해 국민안전 보호 및 사회경제적 피해 저감

- (지원분야 및 대상) 육해공 무인이동체 분야 산·학·연 연구자, 소방청· 해경청 실수요자
- (지원사항) 소방청, 해경청의 재난안전 분야 현장전문가와 기술전문가로 구성된 기획위를 통해 구체화된 수요기술을 토대로 연구개발 할 연구자를 공모로 선정하여 연구비 지원
 - (소방청) 드론 및 무인지상로봇(UGV) 공동임무

* 총예산 : 약 200억원

* 기간 : 사전기획(3개월) - R&D 및 시제기개발(2~3년) - 현장실증(2년)

- (해경청) 드론 및 무인수상함정(USV) 공동임무

* 총예산 : 약 200억원

* 기간 : 사전기획(3개월) - R&D 및 시제기개발(2~3년) - 현장실증(2년)

□ 사업 추진체계

○ (주관) 과기정통부/(협조) 행안부/(수요) 소방청, 해경청 → (전문기관) 한국연구재단 → (수행기관) 사업단(공모) → 산·학·연 연구자(공모)

	구분	추진체계상 역할			
주관기관	과기정통부	R&D, 시제품 개발 및 실증 등 사업 총괄			
	(협조부처) 행안부	무인이동체 현장실증 지원, 현장적용 관련 제도개선			
참여기관	(수요부처) 소방청·해경청	리빙랩 참여, 현장 적용성 점검, 현장적용을 위한 매뉴얼 개선 및 현장적용			
전문기관	한국연구재단	사업관리 및 지원			
사업단	공모	세부과제 연구개발 요구도 관리 및 실증			
연구자	공모	세부과제 연구개발 및 실증			

□ 주요 사업내용

- **극한의 재난현장에서도 고성능 및 자율협력을 통해 임무를 완수**할 수 있는 자율협력형 육·해·공 무인이동체 개발
 - (소방임무) 복사열 200℃, 연무로 인한 가시거리 1m 이내의 화재현장에서 실내수색(화점·생존자·건물안전)용 드론 및 UGV, 지상 운용시스템 개발
 - (해경임무) 드론, USV, 자율구명정 등 무인이동체의 자율협업을 통해 악조건(풍랑주의보, 해상상태 4)에도 근해 해양사고시 수색구조 가능한 자율협력무인체계 개발

- **연구자, 소방 및 해경요원 등이 협업**하여 재난현장 임무용 육해공 무인 이동체를 개발, 실환경에서 실증하여 **현장에서 임무수행 완결성을 제고**
 - (협업개발) 사전기획(상세설계), R&D, 시제품개발, 현장실증 등 전과정에서 연구자와 현장요원이 협업할 수 있는 리빙랩 운용
 - (제도개선) 무인이동체 현장적용시 제도적 한계를 사전기획 및 R&D 과정에서 식별하여 제도개선 추진, 원활한 임무운용을 지원

□ 사업 기대효과

○ 현장 접근성이 열악한 해상사고, 대형화재 발생 시 초**동 및 후속 조치** 가능한 육해공 무인이동체 개발을 통해 인명·재산 피해 저감

□ 사업 특징

- 기획 및 설계 단계부터 소방청, 해경청의 리빙랩 기반 현장 수요조건을 반영하여 재난현장에서 실제 적용가능한 재난임무용 무인이동체 개발 및 실증
- 과기부 **"육해공 무인이동체 원천기술개발" 사업성과(공통핵심기술)를 즉각 반영**하여 현장 애로 해소

□ 사업 성과지표

○ 육해공 무인이동체 체계종합 주 마일스톤마다 기술적 검증 및 현장전문가 요구사항을 만족시키는 성과지표 기획

성과지표명	목표치						측정방법	
· 연박시표경	′25	′26	′27	′28	′29	′30	7001	
현장 만족도(단위: %)	60	65	70	80	90		무인이동체 개발 리빙랩 참여 소방 및 해경 대원 대상 만족도 조사	
개발 및 실증 완성도(단위: %)	60	65	70	75	80		마일스톤 단계별 기술 및 리빙랩 전문가가 연구개발 및 실증의 완성도를 평가	
재난안전 임무용 무인이동체 개발 사업진도율(단위: %)	20	40	60	80	100		[측정산식] 진도율 = 통과 마일스톤 수/5 *통과 마일스톤 : SDR ,PDR, CDR, FFRR1, FFRR2	

2 내역사업 ①: 화재현장 실내수색 무인이동체 개발사업

□ 사업개요

사업기간	2025 ~ 2029	총사업비	200억원(국비 : 200억원)
주관기관	과기정통부 (협조부처	-행안부/수	요부처-소방청)

□ 사업내용(지원내용)

- 연구자, 소방요원 등이 협업하여 대형화재 현장 실내수색 무인이동체 시제기를 개발, 실환경에서 실증하여 현장에서 임무수행 완결성을 제고
 - 사전기획(상세설계), R&D, 시제품개발, 현장실증 전과정에서 연구자와 소방요원이 협업할 수 있는 리빙랩 운용
 - 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발

< 개발요구도(예시) - 본연구 착수시 상세설정 >

무인 협업운용 체계	핵심 개발기능	개발성능					
① 실내수색 드론	 · 실내 위성항법불용환경에서 영상/관성항법 및 UGV와 상대항법 등을 통한 정밀항법 · EO, IR, Lidar, Radar, 초음파센서 등의 임무장비 탑재 · 현장상황에 따라 Plug&Play방식 임무장비 교체·운용 · 지상조종자 혹은 UGV와 통신 두절시에도 안정적인자율비행 · BIM 등의 디지털 건물정보를 활용한 자율비행 · 드론은 완전자율비행과 수동조종, 수동조종보조 등의 조종모드를 보유 	· 임무수행시간(드론 1개 기준) : 이착륙 포함 10m/s의 속도로 비행 했을 때의 20분 이상의 수준 · 이동/수색가능 공간 : 0.5m × 0.8m · 모터와 모터간의 축간거리 기준 350mm 이내 · 프로펠러 가드 필수					
② UGV	 · EO, IR, Lidar, Radar, 초음파센서, 생체 탐지장비 등의 임무장비를 탑재하고, 화재현장의 상황에 대한 정보를 취득, 지상통제시스템으로 전송 · 현장상황에 따라 Plug&Play방식 임무장비 교체·운용 · 드론과 지상조종사, 지상통제장비간에 드론의 비행정보와 임무정보, 조종신호 등을 무선중계 · 실내 위성항법불용환경에서 영상-관성-오도메트리 융합을통한 항법 및 드론에 대한 상대항법 정보를 제공 · SLAM 기능 보유, BIM 등의 디지털 건물정보를 활용한 자율운용 기능 보유 	· 운용시간 : 1시간 이상 · 총중량 : 80kg 이내					
③ 지상통제 시스템	• 도론, UGV 등 화재현장에서 운용되는 무인이동체에 대한 관제 및 통제, 임무정보 도시 기능 • 도론과 UGV 등에서 전송되는 임무정보(EC, IR, Lidar, Radar, 생체신호, 초음파센서)를 융합해 통합영상을 제공 • 영상 AI 분석을 통한 실내 피해현황 분석, 안전진입여부 등을 판단보조 • SLAM 기능을 보유하고, 생성된 SLAM 정보와 BIM을 비교해 건물 피해상황 파악 기능 보유 • 필요시 완전자율로 운용되는 드론, 이동형 로봇에 대한 반자동 혹은 수동조종이 가능(조종권 보유)						

무인 협업운용 체계	핵심 개발기능	개발성능
4	· 드론-UGV-외부 지상통제/조종 시스템과 안정적인 무선네트	
통신	· 통신시스템은 지상중계망에 의존하지 않고, 드론-UGV-외부 자 통해 안정적인 작동이 보장	(3동제/소중 시스템에 답재된 동 신모 필을
시스템	* 실내 Infra-less 통신, UGV는 Infra 통신과 연결	

실내환경 가시화

UGV 인명탐지/화점인식

실내환경 가시화

____ 객체인식/자율수색

통신중계

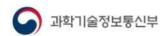
무인이동체 운용

실내환경 가시화

영상AI분석 의사결정지원

□ 개발 성능목표

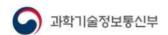
- (개발목표) 대형화재 초기진화 후 현장에서 화점 및 생존자 수색, 붕괴 여부 진단 등 임무를 협력수행하는 드론, UGV 임무수행 체계 개발
 - **(실내수색 드론)** 20분 비행, 외부 복사온도 200℃, 축간거리 350mm, 다종 임무장비 탑재, 통신 두절시에도 안정적 자율비행
 - (UGV) 운용시간 1시간 이상, 총중량 80kg 이내, 드론에 대한 상대 항법 정보 제공 등
 - (지상통제시스템) 드론, UGV 등 화재현장에서 운용되는 무인이동 체에 대한 관제 및 통제 등
 - (통신시스템) 드론-UGV-외부 지상통제/조종 시스템과 안정적인 무선네트워크 제공


○ 성능목표

핵	핵심 기술/제품 성능지표		단위	달성 목표	국내최고 수준	세계최고수준 (보유국, 기업/기관명)
	1	드론 크기(축간거리)	mm	≤350	-	-
	2	드론 운용시간	min	≥20	-	-
	3	드론 총 중량	kg	≤2.5	-	-
실내	4	임무중량	kg	≥0.3	-	-
수색	5	비행가능 장애물 통과 폭	m	≤0.5	-	-
드론	6	비행가능 가시거리	m	≤1.0	-	-
	7	외부 복사열(온도)	℃	≥200	-	200℃ (스위스, 영국)
	8	방수/방진	IP	IP66	-	-
	9	영상 해상도(IR)	pixel	640×512	320x240	640×512 (미국, FLIR)
	1	크기 (이내)	mm×mm (length*width)	1200×750	-	1098×450 (스위스, ETH Zurich)
UGV	2	무게	kg	80	-	60 (스위스, ETH Zurich)
	3	내열 (복사열 차폐율 등)	min(°C)	≥60 (200°C)	-	-

핵	심 기	술/제품 성능지표	단위	달성 목표	국내최고 수준	세계최고수준 (보유국, 기업/기관명)
	4	최대운용시간	hr	≥1	-	1.5 (미국,보스턴다이나믹스)
	5	재난지역 탐색 속도	m/min	≥ 20	-	-
	6	험지 주행 능력 (종경사/횡경사)	%	≥45/20	-	45/20 (미국,보스턴다이나믹스)
	7	방수/방진	IP	IP66	-	IP54 (미국,보스턴다이나믹스)
	8	영상 해상도(IR)	pixel	640×512	320x240	640×512 (미국, FLIR)
	9	이동체간 통신가능거리 (농연 상황)	m	≥ 100	-	-
	10	탑재 가능 중량	kg	45	-	40 (스위스, ETH Zurich)
	11	측위 및 매핑 정확도 (농연 상황)	cm	40	-	30 (영국, 캠브리지대)
	1	BIM기반 맵핑 정확도	cm	40	-	-
지상	2	동시 AI 영상 분석	개	5	-	-
통제 시스	3	센서정보 표출 종류	개	3	-	-
템	4	동시 표출 영상	개	5	-	-
	5	동시 mission plan	개	5	-	-
	1	최대통신거리 (실내 to 실외)	m	data 통신 : 100m 제어 통신 : 300m	50m	100m (영국, ELIOS Co)
통신	2	최소 전송속도	Mbps	2	-	-
시스	3	장벽(벽면) 통과 수	개	≥ 3	-	-
템	4	멀티(중계) 링크(hop)	hop	2	2	3 (미국, FANETs)
	5	동시 접속 개체 수/ 1 GCS	개	5	2	4 (미국, Sealevel)
	6	동시 채널 운용 수/ 1 band	ch	5	2	2 (미국, Headwall)

^{*} 별도 색상으로 표시한 지표는 최소한으로 요구되는 핵심성능으로 반드시 달성 하되 그 외 사항은 연구자가 자율적으로 제안 가능


□ 개발기술

(1) 실내수색 드론

- 항법/센서
 - UGV와 드론 (최대 4대) 간의 상대벡터 도출 기술
 - UGV와 드론 간의 통신 두절시에도 수 분간 위치정확도를 유지시키는 기술
 - UGV 또는 지상운용시스템에서 전달된 실내 지도를 활용한 위치측정 기술
- 동력 및 구동모듈
 - 내열성, 충격안정성, 고밀도 배터리
 - 내열성, 고방습-방진 모터
 - 내열성, 고응답성의 인버터 및 제어기
 - 열과 노이즈에 강한 와이어 하네스
 - 고추력 고효율의 카본파이버 계열 프로펠러

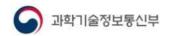
○ 임무장비

- 다양한 이종센서를 결합한 요구조자 탐지장비 및 탐지 기술
- 현장 상황 인지 및 판단을 위한 임무장비 및 machine-assisted 상황 인식 기술
- 임무장비 Plug&Play 운용을 위한 통합 아키텍처 및 모듈화 기술
- 극한환경 플랫폼(체계 종합)
 - 내열, 내습 기체 설계
 - Plug&Play 방식 교체 가능한 복수 임무센서 탑재 및 운용 기술
 - 고열 대류 환경 비행 기술
 - 이종다수 무인이동체간 자율/반자율 임무수행기술(협력적 임무계획, 임 무수행, 통신이상 시 임무지속/비상대응, 자동복귀, 수동조종보조)
 - 내열(단열) 드론기체 케이스
- 비행제어

○ 장애물 탐지 및 충돌방지

- Radar/Thermal camera등 실내 소방환경을 고려한 센서환경에서의 장애물 인지 기술
- 극한 소방환경을 고려한 주변 환경 3차원 장애물 지도 작성 기술
- Thermal camera를 이용한 깊이 이미지 추정 기술
- 실시간 장애물 회피 알고리즘 기술
- 통신데이터링크 및 원격조종

(2) UGV


- 항법/센서
 - 건물 기준 절대 위치 추정 기술
 - 드론의 상대항법을 유지시키는 측위 지원 기술
 - 드론용 상대항법 보조단말 배치 기술
 - BIM 연계 대면적 신속 지도작성 기술
- 동력 및 추진
 - 내열/내습 전장 부품 및 모듈 설계
 - 내열/내습, 경량/고토크 전동모터
 - 내화/내열 배터리 및 열관리 시스템
- 임무장비
 - (EO 카메라) 시야개선, 화재현장의 시각적 정보 획득
 - (IR 카메라) 열감지, 잔여 화재 위치 및 온도 분포 확인
 - (LiDAR) 거리 측정, 근거리 환경 구조 분석 및 항법
 - (Radar) 장애물 감지 및 거리 측정 등
 - (특수목적 장비) 인명 구조용 생체 탐지장비, 소화제 분사 장치
 - (임무장비 안정화) 영상 및 센서 안정화 기술
 - (상황 인식) 인공지능 상황인식 및 위험도 판별 기술
- 극한환경 플랫폼 (체계종합)
 - 고온/다습 환경 내화성 및 내열성 소재 적용 기술

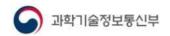
- 복사열 반사/열차폐 및 능동 냉각 시스템 기술
- 센서모듈 보호 및 후처리 기술
- 안전 및 내구성 테스트 및 평가 기술
- 구조 강화 및 방열 시스템
- 자가 상태모니터링 및 건전성 진단 기술

○ 주행제어

- 학습기반 자기균형 및 험지 주행 제어
- 가상/증강현실 기반 학습 및 제어 시뮬레이션 기술 개발
- 불규칙 장애물 극복 이동기술
- 구동모터 열관리를 위한 부하제어
- 지도기반 경로계획/주행, 길안내 및 임무장비 운반 등
- 시각적 및 환경 센서 융합 기반의 자율주행 제어 기술
- 장애물 탐지 및 충돌방지
 - 연무조건 환경인식 기술
 - 플랫폼 안전 제어 기술
 - 탐색 영역 및 경로 생성 기술
 - 학습기반 자가 대처가 가능한 자율 탐색 기술
- 통신데이터 링크 및 원격조종
 - 고온 환경 대응 무선 통신 기술
 - 다수드론과 데이터 연계를 위한 Ad-hoc 네트위크 기술, 기체의 주행 및 임무 정보 송수신, 멀티 채널 통신 등
 - 민감정보 제한, 원격제어 신뢰성 확보 등을 위한 재난안전용 보안 솔루션 기술 개발
 - 통신 상태를 모니터링하여 상태 이상 시 자동 복귀 등의 fail-safety 기술
 - 원격 조종 데이터 링크
- 드론 비행 보조
 - 드론 비행 상대항법을 위한 통신 단말 자율 설치
 - 드론 대비 고중량 임무장비를 탑재, 운반 등

(3) 지상통제시스템

○ 통합관제


- 무인이동체 관제 기술
- 임무정보 기반 정밀 상황인지 기술
- 무인이동체 임무 프로파일 관리 기술
- UGV-드론 서브 관제 기술
- 드론-UGV 통합 제어를 위한 콘솔 모듈 개발
- 클라우드 및 적응형 단말 연계 통합관제플랫폼 기술
- 혼합현실 기반 다차원 운용 기술
- 3D 기반 통합 다중정보 관리 및 UI/UX 기술

○ 임무정보 구성 및 상황인식

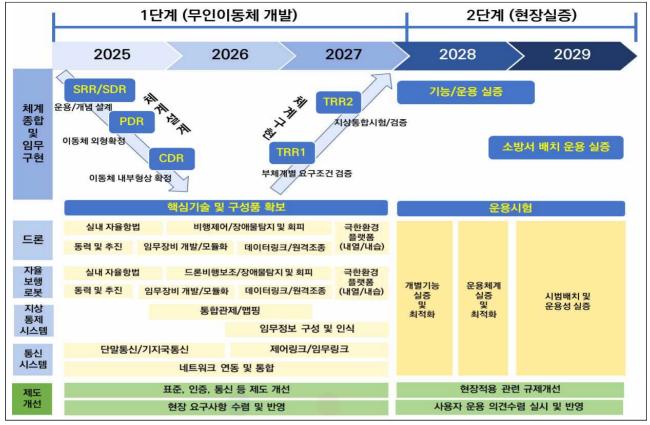
- 화재 상황 분석 및 지능화 기술
- 임무를 위한 실시간 이동경로 생성 기술
- 비행데이터와 영상 정보 정합 및 동기화 기술
- 다중 데이터 융합 상황 인식 및 주행 · 비행가능 영역 인식 기술
- 3D 모델 기반 임무 정밀 임무 계획 동적 생성 기술
- 협력 자율지능의 상호 규격 프로토콜 기술
- 자율 임무형 통합 제어 전달 및 관제 기술
- 멀티모달 센싱 정보 융합기술
- 협력 자율지능 임무 정의 표준화

○ 맵핑

- 드론-UGV의 이동에 대한 실내 위치 매핑 기술
- 외부 네트워크를 통한 반자동 드론-UGV 제어 기술
- 영상 및 영상 AI 분석 결과의 3D 매핑 기술
- 센서 및 영상 데이터의 AI 분석 결과를 통한 안전도 판단 기술
- 실시간 3D 모델 재구성 기술
- 실시간 진화형 화재 확산 모델 생성 및 가시화 기술
- 실시간 최적 통신 환경 재구성 위치 지원 기술
- 불완전 멀티모달 임무정보 기반 공간재해석 지원 기술

(4) 통신시스템

- 단말통신
 - SWaP 고려 단말 소형화 및 고효율화 기술
 - 바디 프레임 다중 안테나 설계 기술
- 기지국 통신
 - 통상적으로 사용되는 ISM band를 기반으로 하되, 연무상황, 콘크리트 등 장애물에도 원활한 통신 지향
- 제어링크
 - 단일 홉 다채널 고신뢰성 웨이브폼 기술
 - 혼간섭 대응 기술
 - 저속 임무 데이터 다중 전송 기술
 - 소방 통신 중계망 기술
 - 중계 통신 프로토콜 기술
 - 제어링크 관리 기술
 - 중계 이동체 기반 임무 인터페이스
- 임무링크
 - 소출력 운용 가능 광대역 웨이브폼 기술
 - 다중 홉 중계 기술
 - 무선채널 자동 대응 기술
 - 적응형 영상 전송 기술
 - 영상 지능화 기술
 - 다중영상 채널 주파수 공유 기술
 - 드론-UGV 협업을 통한 임무데이터 중계
- 네트워크 연동 및 통합
 - Infra-less 네트워크 기술
 - 다중 이종 통합 유무선 네트워크 기술
 - 통신 이중화 기술



□ 연구개발 로드맵

무인이등	통체 협업체계		개발		현장실증		
대분류	중분류	2025	2026	2027	2028	2029	
<u> </u>	항법/센서						
	동력 및 구동모듈						
	임무장비						
실내수색 드론	극한환경플랫폼 (체계종합)						
	비행제어						
	장애물 탐지 및 충돌방지						
	통신데이터링크 및 원격조종						
	항법/센서						
	동력 및 추진						
	임무장비						
1101/	극한환경플랫폼 (체계종합)						
UGV	주행제어						
	장애물 탐지 및 충돌방지						
	통신데이터링크 및 원격조종						
	드론 비행 보조						
	통합관제						
	임무정보 구성 및 상황인식						
	맵핑						
CCC/E N	단말통신						
GCS/통신	기지국통신						
	제어링크						
	임무링크						
	네트워크 연동 및 통합						

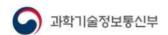
< 화재현장 실내수색 무인이동체 개발 >

□ 최종개발품

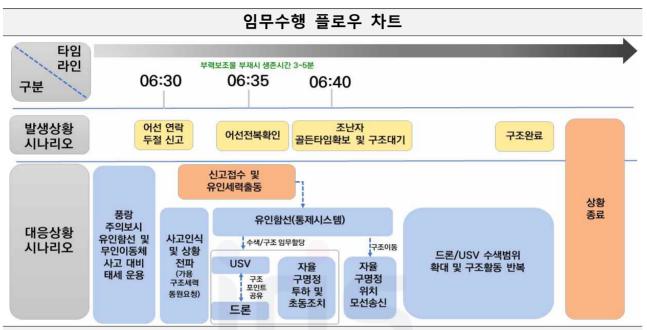
○ 대형화재 초기진화 현장(실내 복사열 200° 이상)에서 화점·생존자 수색, 안전확인 등 임무를 협력하는 드론, UGV 임무수행 체계 개발

내역사업 ②: 근해 해난사고 대응 무인이동체 개발사업

□ 사업개요


사업기간	2025 ~ 2029	총사업비	200억원(국비 : 200억원)	
주관기관	과기정통부 (협조부처-행안부/수요부처-해경청)			

□ 사업내용(지원내용)


- 연구자, 해경요원 등이 협업하여 근해 해난사고시 조난자 수색 및 구 조용 무인이동체 시제기를 개발, 실환경에서 실증하여 현장에서 임무 수행 완결성을 제고
 - 사전기획(상세설계), R&D, 시제품개발, 현장실증 전과정에서 연구자와 소방요원이 협업할 수 있는 리빙랩 운용
 - 근해 해양사고 수색 및 구조를 위한 자율협업무인이동체

< 개발요구도(예시) - 본연구 착수시 상세설정 >

무인 협업운용 체계	핵심 개발기능	개발성능				
① 해양수색 드론	· 자동 충전 및 도킹 스테이션(독립된 모듈로 유무인선에 설치) · 10kg급 자율구명정(소형) 투하 및 정밀유도 기능 · EO/IR 기반 순찰, 수색, 구조 모니터링 기능	· 운행시간 : 1.5시간 이상 · 내구성 : 염분에 의한 기체부식, 결 · 함 최소화 · 비행속도 : 120kph 이내				
② 수색·구조 무인선	· 3천톤급 경비함정에 자선으로 탑재, 자동충전 및 도킹스 테이션 · 경비함정으로부터 진회수 기능 · 자율구명정 투하 및 정밀유도 기능 · 드론에 대한 자동 이착륙 및 충전기능 · 조난자 탑승 지원 (최대 4인 탑승) · 소형어선, 해상부표 자율인식 운항	· 운행시간 : 12시간 이상 · 내구성 : 염분에 의한 기체부식, 결 함 최소화 · 운항속도 : 35노트 이상 · 운항조건 : 해상상태 4 수준, 수심 1m 이상				
③ 자율 구명정	<소형> 연해 및 갯벌에서 드론의 유도를 통한 자율주행 기능, 부력을 통한 2인 부양 가능 <중형> 해양에서 드론 및 무인선 유도를 통한 자율주행 및 조난자 정밀접근 기능	· 총중량 10kg 이내 <중형>				
④ 통제 시스템	 소단사 성일업근 기능					

무인 협업운용 체계	핵심 개발기능	개발성능
⑤ 통신 시스템	· 무인이동체에 대한 vehicle to vehicle 데이터 통신기능 보유 · 통신거리/감시선확대로서 무인선에 유선드론을 탑재 및 활용 * 20km 이내 통신 가시선 확보	 최대 임무거리 20km이내에서 드론 무인선-자율구명정 등 최대 5개체 대한 조종-임무 통신을 제공 최소 요구 영상품질 : 720p(HD) 최소 요구 영상개수 : 10개 이상 주파수 : 5,090~5,110MHz

근해 해양사고 대응 무인이동체 개념도

□ 개발 성능목표

- (개발목표) 풍랑주의보 등 악기상 근해 해상에서 자율협력하여 조난자를 신속히 수색·구조하는 드론, 무인선, 자율구명정과 임무수행 체계 개발
 - (해양수색드론) 운행시간 1.5시간 이상, 비행속도 120kph 수준, 무 인선 이착륙
 - (수색·구조무인선) 운항조건 해상상태 4 이상, 운행시간 12시간 이상, 운항속도 35노트 이상
 - (자율구명정) 1인 구조용(소형), 4인 구조용(중형) 개발, 자율주행 및 조난자 정밀접근 기능
 - (통제시스템) 경비함정(모선)에 배치되어 드론-무인선 통합관제, 무 인이동체 임무 명령 및 제어
 - **(통신시스템)** 최대 임무거리 20km, 최소 요구 영상품질 720p(HD), 최소 요구 영상개수 10개 이상

○ 성능목표

핵심 기술/제품 성능지표		단위	달성 목표	국내최고 수준	세계최고수준 (보유국, 기업/기관명)	
	1	드론 운용시간	min	≥90	-	-
	2	임무비행(순항)속도	km/h	110~130	-	-
해양 수색	3	임무중량	kg	≥10	-	-
드론	4	내풍성 (순항 중)	m/s	≥20	-	-
	5	내풍성 (수직이착륙)	m/s	≥12	-	-
	6	임무비행반경	km	≥20	-	-
수색·	1	운용환경	Sea state	≥ 4	N/A ⁴⁾	5 (미국, DARPA)
구조 무인	2	운항시간	hr	≥ 12 ¹⁾	15	3 months (미국, DARPA)
선	3	최대속도	knot	≥ 35 ¹⁾	45	-

핵	심기	술/제품 성	능지표	단위	달성 목표	국내최고 수준	세계최고수준 (보유국, 기업/기관명)
	4	최대중량	/ 최대길이	ton / m	5 / 10	-	-
	5	무인선 진	회수 시간	min	5 ²⁾	5 ⁵⁾	N/A
	6	조난자 팀	탁지 거리	m	50 ²⁾	N/A	N/A
	7	조난자	인식률	%	70 ²⁾	N/A	N/A
	8		실 위치 제어 .차	m	1.5 ²⁾	3 ⁶⁾	N/A
	9	조난자 무	인선 승선 간	min	3 ²⁾	N/A	N/A
	10		제어 오차	L	2 ²⁾	1.5 ⁶⁾	N/A (미국, ASV Global)
	11	탐지 타선	최소 크기	m	8 ²⁾	8	N/A (미국, JPL Robotics)
	12	추적 타선	최대 개수	개	15 ²⁾	15	N/A (미국, JPL Robotics)
	13		고도	m	100 ²⁾	100	150 (미국, DPI)
	14	유선드론 운용 환경	풍속	m/s	13 ²⁾	18	20 (이스라엘, 호버마스트)
	15	E0 E0	비행속도	km/h	50 ²⁾	50	50 (이스라엘, 호버마스트)
	1	구명 뗏목형	최대중량	kg	10	N/A	N/A
	2		최대 이동거리 ³⁾	m	40 ¹⁾	N/A	N/A
	3		최대 승선인원	명	1	N/A	N/A
	4		속도 ³⁾	knots	8 ¹⁾	N/A	N/A
	5	(소형)	경로추종 제어 오차	L	2 ²⁾	N/A	N/A
	6		통신거리	m	400	N/A	Wifi (포르투갈, NORAS)
자 <u>율</u> 구명	7		낙하고도	m	≥ 10 ²⁾	N/A	N/A (미국, Hydronalix)
정	8		최대중량	kg	20	N/A	14 (포르투갈, NORAS)
	9		최대 이동거리 ³⁾	m	5,000 ¹⁾	N/A	5,900 (포르투갈, NORAS)
	10	조난자	속도 ³⁾	knots	8 ¹⁾	N/A	8 (포르투갈, NORAS)
	11	이송형 (중형)	경로추종 제어 오차	L	2 ²⁾	N/A	N/A
	12		최대 이송인원	в	4	N/A	1 (포르투갈, NORAS)
	13	3	통신거리	m	1,000	N/A	Wifi (포르투갈, NORAS)

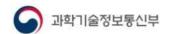
핵심 기술/제품 성능지표			단위	달성 목표	국내최고 수준	세계최고수준 (보유국, 기업/기관명)
	1	동시 AI 영상 분석	개	10	-	-
	2	센서정보 표출 종류	개	3	-	-
통제	3	동시 표출 영상	개	10		
시스	4	동시 mission plan	개	5		-
템	5	이동체 위치 동시 표출	개	5	-	-
	6	상황 정보(meta data) 생성	종	5	-	-
	1	최대통신거리	km	≥20	5	15(VLOS기준) (중국, DJI)
	2	최소요구영상개수	개	≥10	-	-
통신	3	영상 해상도	pixel	1280X720	-	-
시스 템	4	동식 접속 개체 수/ 1GCS	개	5	2	4 (미국, Sealevel)
	5	병렬 통신 방식 수	개	3	2	-
	6	멀티(중계) 링크(hop)	hop	2	-	3 (미국, FANETs)

^{*} 주) 1) 정수중 기준, 2) 해상상태 4 기준, 3) 조난자 비승선 기준, 4) 수색구조 용 무인선 기준, 5) 해상상태 3 기준, 6) 해상상태 2 기준

□ 개발기술

(1) 해양수색 드론

- 기체(체계종합)
 - 임무에 따른 기체 형태 선정 및 개념 설계
 - eVTOL 하이브리드 무인기 설계
 - 기체 부식방지 설계
- 비행제어 및 이착륙
 - 해상 임무 수행이 가능한 내풍 요구도를 만족하는 제어기 개발
 - 해상 풍환경 및 기상 환경에 분석을 통한 제어기 개발
 - 해상환경 천이 및 제자리비행 기술
 - 해상환경 측풍 및 돌풍에 강인한 비행제어 기술
 - 해상운용 선박 자동이착륙 기술


^{**} 별도 색상으로 표시한 지표는 최소한으로 요구되는 핵심성능으로 반드시 달성 하되 그 외 사항은 연구자가 자율적으로 제안 가능

- 자율임무비행 기술 (임무계획, 조난자 발견 시 알림 및 임무재계획, 공 중-해상 자율협업임무수행)
- 동력원
 - 하이브리드 동력원 구성 및 기본출력성능시험
 - 하이브리드 동력원 및 추진시스템 지상성능시험
 - 하이브리드 동력원 및 추진시스템 풍동성능시험
- 임무장비 및 센서
 - 자율구명정 탑재 및 투하 기술
 - 자율구명정 정밀유도를 위한 영상 및 조종 중계 기술
 - EO/IR 임무센서 탑재 및 운용 기술

(2) 수색・구조 무인선

- 자율운항
 - 임무 운용 환경에서 무인선 자율운항 기술(경로추종, 충돌회피, 상황인식, 항법 등)
 - 무인선 임무 운용을 위한 단독 관제시스템 개발 (무인선 단독 운용을 위한 관제시스템 등)
- 수색임무시스템
 - 이기종 자율협력 기반 수색 임무 기술(통제시스템에서 무인선 수 색 임무 하달 이후 수색 및 무인이동체·유인함정 간 수색 현황 교환, 수색 협력 등)
 - AI 기반 조난자 탐지 및 추적 기술
 - 구조 인명 및 대상자 탐색 추적 시스템 / EO IR 카메라 / 라이다 레이다 등 센서운용
- 구조임무시스템
 - 무인선-자율구명정 협력 운용 기술 (무인선 동적위치유지, 자율 구명정 정밀 유도, 조난자 구출 등)
 - 자율구명정 운용시스템 개발 (자율구명정 투하 등)

- 인명구조 로봇시스템 (구조인명 승선 보조시스템)
- 선체플랫폼(체계종합)
 - 해상상태 4에서 운용 가능한 무인선 플랫폼 개발 (수색/구조 임 무장비, 유선드론, 자율구명정 탑재 등)
 - 무인선 수색/구조 임무 운용을 위한 자율운항시스템 개발 (수색/구조 임무를 위한 상황인식 시스템, 항법 시스템 설계 및 구축 등)
 - 동력원 및 추진 체계-내연 기관/전기추진 모두 가능 및 워터제 트 추진기(안전 및 낮은 수심 적용 고려시)

○ 진회수

- 해상상태 4에서 무인선-기존 유인 함정 간 진회수 시스템 개발 (기존 유인 함정 호환 진회수 시스템 개발)
- 무인선 및 구조한 인명을 동시에 회수 가능한 시스템 검토 필요

(3) 자율구명정(소형)

- 운항제어
 - GPS를 활용한 경로추종 기능 / 드론 및 무인선 통한 근거리 Remote Control 기능 / 기본 통신 기능
- 선체
 - 헬기 및 무인선에서 투하 및 발사를 고려한 내충격 선체 및 부품 구조
 - 전기배터리 추진기 적용

(4) 자율구명정(중형)

- 운항제어
 - GPS를 활용한 경로추종 기능 / 드론 및 무인선 통한 근거리 Remote Control 기능 / 기본 통신 기능
 - 구조임무를 위한 자율제어 기술
- 선체
 - 헬기 및 무인선에서 투하 및 발사를 고려한 내충격 선체 및 부품 구조

- SS4에서 운용 가능한 내항성 조종성능 확보
- 전기배터리 추진기 적용 구조후 안전을 고려한 추진 시스템
- SS4에서 파랑 중 복원 안정성 확보 필요(North Pacific 기준 Hs~1.88m, Tp~8.8s, Lw~120m)
- SS3에서 임무수행을 위한 내항성능 및 조종성능 확보 기술
- 헬기 투하 높이에서의 입수 충격하중을 고려한 내충격 선체 구조 설계

(5) 통신시스템

- 공통SW 아키텍처
- 무인이동체 데이터 플랫폼
- 영상관제플랫폼
- 무인이동체 관제 플랫폼
- 해상전파환경 분석
 - 해상 전파자원 분석
 - 통신채널 가용성 분석 및 설계
 - 해양통신 스펙 요구사항 도출

○ 단말통신

- 단말 통신 전파제어
- 해상통신 단말 프로토콜 기술
- 단말 안테나 기술

○ 기지국 통신

- 해상 장거리 통신용 전파제어
- 통신망 관리 및 모니터링 기술
- 해상통신 기지국 프로토콜 기술
- 해상 기지국 안테나 기술


○ 임무링크

- 적응형 영상 전송 기술
- 영상 지능화 기술
- 다중영상 채널 주파수 공유 기술

- 해상 장거리 협력통신
 - 장거리 해상통신 중계망 기술
 - 중계 통신 프로토콜 기술
 - 제어링크 관리 기술
 - 중계 이동체 기반 동적 임무 인터페이스
- 통신 통합제어 시스템
 - 지능형 통합망 관리 시스템
 - 단말 통신 HW 제작
 - 통합 게이트웨이 HW 제작
 - 에어모빌리티용 중계기 HW 제작



□ 연구개발 로드맵

무인이동	등체 협업체계		개발		현장	실증
대분류	중분류	2025	2026	2027	2028	2029
	기체 (체계종합)					
해양수색	비행제어 및 이착륙					
드론	동력원					
	임무장비 및 센서					
	자율운항					
	수색임무시스템					
수색·구조 무인선	구조임무시스템					
TEE	선체플랫폼 (체계종합)					
	진회수					
 자율구명정	운항제어					
(소형)	선체					
자율구명정	운항제어					
(중형)	선체					
	공통SW 아키텍처					
	무인이동체 데이터 플랫폼					
	영상관제플랫폼					
	무인이동체 관제 플랫폼					
통신/관제	해상전파환경분석					
6 C/ C/II	단말통신					
	기지국 통신					
	임무링크					
	해상장거리협력통신					
	통신 통합제어 시스템					

< 근해 해난사고 대응 무인이동체 개발 >

□ 최종개발품

○ 해상상태 4 수준의 근해 해상에서 자율협력하여 조난자를 신속히 수색· 구조하는 드론, 무인선, 자율구명정과 임무수행 체계 개발

4

사업의 타당성

[1] 사업의 목적

- 대형화재 초기진압 후 현장 탐색 및 요구조자 수색, 근해 해난사고 발생시 신속대응 및 구조를 위한 육해공 무인이동체 개발을 통해 국민안전 보호 및 사회경제적 피해 저감
 - 화재현장 실내수색을 위한 드론, UGV 등 무인이동체 개발
 - 근해 해난사고 수색·구조를 위한 드론, 무인선, 자율구명정 등 무인이 동체 개발

(2) 사업의 시급성 및 필요성

- (재난대응 시급) 기존 인력·장비로 대형화·복합화된 재난에 대응하는 것에 한계 봉착, 무인이동체를 통한 대응필요성이 증가하였으나 실제 현장활용은 부족
 - * (대형화) 기후위기로 돌풍/파고 대형화, (복합화) 대형공장/물류센터 산업기반 화재시 붕괴가 병행
 - (대형화재) 공장 등에서 발생한 대형화재 초기진화 후 생존자 구조, 화재확산 저지를 위한 화점수색이 요구되나 붕괴위험으로 현장요원 투입이 매우 위험
 - * '24.2월 문경 공장화재에서 화재 초기진화 후 생존자 및 화점수색을 위해 진입 한 소방대원 2명이 급격한 불길확산으로 탈출하지 못하고 사망

※ 문경 공장화재 수색진입 소방대원 2명 사망 사건

- ▶ (사고개요) 2024. 1. 31.(수) 19:47 경북 문경시 신기동 육가공공장 화재발생
- ▶ **(인적피해) 사망 2(소방대원) ▶ (동원세력)** 인력 348명, 장비 63대
- ▶ (사망경위) 초기진화 후 실내에 요구조자가 없다는 증언에도 불구하고 실내에서 1명 이 탈출, 추가 생존자가 있을 것으로 판단되어 소방대원 4명 진입, 불길이 급격히 확산되어 건물 붕괴 시작, 2명은 탈출했으나 2명은 고립후 사망

AS-IS(현대응체계)		TO-BE(무인이동체 적용)
▶실내상황 : 대피자 증언에 의존 ▶진입여부 : 건물 외부에서 판단	\Rightarrow	▶실내상황 : 무인이동체가 진입후 가시화 ▶진입여부 : 실내정보 기반 진입여부판단
▶화점/인력수색 : 소방대원 직접수색		▶화점/인력수색 : 드론, UGV 1차 수색

- (근해사고) 급격한 해양 기상변화로 예기치 못한 구조요청 발생, 풍랑주의보 상황으로 안전하고 신속한 구조에 난항
- * '24.3.9일 통영에서 급격한 기상악화로 어선침몰, 급격한 물살로 조난자가 광범 위하게 흩어져 신속한 수색과 구조가 어려워 선원 전원 사망 및 실종

※ 통영 욕지도 어선 침몰 선원 9명 사망 및 실종사건

- ▶ (사고개요) 2024. 3.9.(토) 6:29 통영 인근 어선 연락두절, 욕지도 남방서 전복 발견
- ▶ **(인적피해) 사망 4. 실종 4명** ▶ **(동원세력)** 경비함정 11척, 해군함정 2척, 항공기 5대
- ▶ (사망경위) 3. 9. 수중수색 중 3명(한1, 인2) 발견 / 북서방 7해리 해상(인1) 발견 / 10일간 수색, 추가발견X

AS-IS(현대응체계)

▶ 수색 : 급격한 물살로 조난자 광범 위하게 흩어져 수색 난항

▶ 구조 : 풍랑주의보 상황으로 유인대

원 구조투입 어려움

TO-BE(무인이동체 적용)

▶ 수색 : 드론-USV 협업으로 넓은 범위 수색

▶ 구조 : 위험상황에서도 무인이동체를 통해 구조활동 수행, 초동조치 가능

- (자율협력 무인이동체 필요) 그간 재난현장용 무인이동체 개발이 이루어졌으나, 단일기체 중심의 기술개발로 골든타임이 중요한 신속한 임무에는 적용 어려움
 - * 현재 개발중인 해양사고 신속대응 군집수색 자율수중로봇시스템은 해경청 단독 사업으로 추진중이며 수중무인이동체의 수중탐사강화를 목표로 개발 진행 중
 - ** 소방용 4족 보행 로봇 기반 인명탐지 화재진압 솔루션 개발 및 소방 로봇 센서 실증(소방청/산업부/행안부) 등 화재대응 무인이동체는 단일 기체 개발을 중심 으로 추진
 - (대형화재) 복사열 200℃에 달하는 극한의 조건에서 신속한 수색을 위해 이기종 무인이동체 협업은 필수적
 - (근해사고) 해상상대4의 극한 해양환경에서 유인세력이 도달하기 전 초동조치를 위한 공중-수상 협업 무인이동체 개발 필요
- (부처협력 필요) 극한의 재난상황에서 임무수행하는 무인이동체 개발을 위해 과기정통부의 도전적 연구와 재난부처의 풍부한 현 장경험이 결합된 부처협력연구가 반드시 필요
 - 과기정통부는 무인이동체 원천기술에 집중 투자하여 기술수준을 향상*, 행안부·소방청·해경청 등 재난대응 부처와 협력을 통한 재난현장 무인이동체 적용 적기
 - * 원천기술 분야 세계 최고 대비 국내 기술수준 : ('17) 60% → ('22) 80%

(3) 정부지원(국고) 필요성

- (과학기술분야 연계성) 제5차 과학기술기본계획('23~'27)에서 '과학 기술 기반 국가적 현안해결 및 미래대응'을 전략으로 제시
 - 전략3. 과학기술 기반 국가적 현안 해결 및 미래 대응
 - · (연계성) 육해공 무인이동체를 통해 대형화재, 해양안전 등에 대응하여 안전체계를 강화하는 점에서 기본계획과 동 사업은 정책적 연계성이 높음
- (재난안전분야 연계성) 제4차 재난 및 안전관리 기술개발 종합계획 ('23~'27)은 현장임무 중심의 촘촘한 대응체계 구축을 위해 현장 수요에 대응한 R&D 강화를 제시
 - 전략1. 현장임무 중심의 촘촘한 대응체계 구축
 - · (연계성) 재난안전 현장부처(소방청, 해경청 등)의 현장수요에 대응하여 현장 적용 가능한 임무용 무인이동체 개발하는 점에서 높은 부합성을 가짐
- (부처 투자전략) 과기정통부는 무인이동체 연구개발 전략('25~'27) 을 수립, 재난대응 등 정부 주도로 공공임무형 무인이동체 개발을 전략으로 제시

(4) 기존 유사사업 현황 및 차별성

① 중복성 검토 개요

- (검토방법) NTIS 검색, 기획위원회 검토 등을 통해 중복성 대상 후보사업을 선정하고, 사업목표, 추진체계, 지원대상, 지원내용, 개발내용 등에서 중복 가능성이 있는지 검토
 - 무인이동체 및 재난대응 관련 다양한 R&D 사업이 존재하나, 재난현장이라는 특수성을 고려해 후보군을 재난현장대응 무인이동체 개발로 한정함
 - * 재난현장은 본 사업에서 대응하는 "대형화재", "해난사고"로 한정하였음
 - ** 무인이동체는 드론, UGV, 무인선 등 육해공 무인이동체뿐 아니라 로봇도 포함하였음

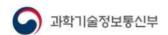
- (후보사업) 재난안전 임무용 육해공 무인이동체개발(R&D)의 중복성 대상 후보사업은 5개로 선정하였으며, 내역별로 중복성 검토
 - (내역1) "내역1. 화재현장 실내수색 무인이동체 개발"의 중복성 검 토 대상 사업은 3개 사업으로 선정
 - (내역2) "내역2. 근해 해난사고 대응 무인이동체 개발"의 중복성 검 토 대상 사업은 3개 사업으로 선정

< 중복성 검토 대상 사업 리스트 >

번호	사업명	부처	재난유형	이동체 유형	비교 내역
비교 1	난접근성 특수화재 진화를 위한 고기능성 소화탄 및 무인 능동진압기술개발(추진중)	다부처 (산자부, 행안부, 과기부, 소방청)	대형화재	UAV	내역1
비교 2	소방용 4족 보행 로봇 기반 인명탐지 화재진압 솔루션 개발 및 소방 로봇 센서 실증 (추진중)	다부처 (산자부, 행안부, 소방청)	대형화재	4족 로봇	내역1
비교 3	국민안전 대응 무인항공기 통합시스템 구축 및 운용(종료)	다부처 (소방청, 과기부, 산업부, 경찰청, 해경청)	대형화재, 해난사고	UAV	내역1, 내역2
비교 4	해양사고 신속대응 군집수색 자율수중로봇시스템 개발(<mark>추진중</mark>)	해경청	해난사고	UUV	내역2
비교 5	무인항공기 기반 해양안전 및 불법어업 수산생태계 관리기술 개발(연장)	다부처 (해경청, 해수부)	해난사고	UAV	내역2

2 화재현장 실내수색 무인이동체 개발

< 화재현장 실내수색 무인이동체 개발 중복성 검토대상 사업 프로파일 >


구분	[비교사업1] 난접근성 특수화재 진화를 위한 고기능성 소화탄 및 무인 능동진압 기술개발사업(산자부, 행안부, 과기부, 소방청)	[비교사업2] 소방용 4쪽 보행 로봇 기반 인명탐지 화재진압 솔루션 개발 및 소방 로봇 센서 실증(산자부, 행안부, 소방청)	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
근거법령	과학기술기본법 제17조(협동·융합 연구개발 촉진)	지능형 로봇 개발 및 보급 촉진법 제2조	과학기술기본법 제11조(국가연구개발 사업의 추진)	과학기술기본법 제11조(국가연구개발 사업의 추진)
기술개발단계	응용/개발	개발	응용/개발	응용/개발
기술분야 (세부기술분야)	항공	기계	항공	항공
투자방향 관련분야	국가전략기술	국가전략기술	국가전략기술	국가전략기술

구분	[비교사업1] 난접근성 특수화재 진화를 위한 고기능성 소화탄 및 무인 능동진압 기술개발사업(산자부, 행안부, 과기부, 소방청)	[비교사업2] 소방용 4쪽 보행 로봇 기반 인명탐지 화재진압 솔루션 개발 및 소방 로봇 센서 실증(산자부, 행안부, 소방청)	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업목적	고층 건물, 혹은 원격지 대형화재를 효율적으로 진압할 수 있는 가스하이드레이트 소화탄과 능동진압 플랫폼 기술개발 지원	화재 현장 인명탐색과 화재진압 활동 지원을 위한 소방용 4족 보행 로봇 기술개발 및 현장실증	재난현장에서 운용 가능한 재난·치안 임무용 무인기 기체 및 운항에 필요한 통신수단, 안전운항, 핵심기술, 무인기 운용 및 관리체계 개발로 국민안전 제고	대형화재 초기진압 후 현장 탐색 및 요구조자 수색을 위한 육공 무인이동체 개발 및 실환경 운용실증
사업 주요내용	○사업예산 : 2745억 ○사업기간 : 23~27 ○사업내용 : 고층 건물, 혹은 원격지 대형화재 를 효율적으로 진압할 수 있는 가스하이드레 이트 소화탄 개발 및 AI기반 능동진압 플랫 폼 기반 기술 확보	○사업예산 : 160억 ○사업기간 : 23~28 ○사업내용 : 소방용 4족 보행 로봇 기반 인명 탐지·화재진압 솔루션 개발 및 소방 로봇센 서 실증	○ 사업예산 : 390.78억 ○ 사업기간 : 17~20 ○ 사업내용 : 자연재해, 산업재해 등 다양한 형태의 재난에 대해 다수의 부처가 협력, 대응하고 이를 통합적 으로 관리할 수 있는 시스템 개발 및 구축	○사업예산 : 200억 ○사업기간 : 25~29 ○사업내용 : 대형화재 초기진화 현장에서 화 점·생존자 수색, 안전 확인 등 임무를 협력 하는 드론, UGV 임무 수행 체계 개발
지원대상	학·연·산	학·연·산	학연산	학연산
과제 선정방식	지정공모	지정공모	지정공모	지정공모
수행주체	①출연기관, ②대학, ⑥중소기업	①출연기관, ②대학, ⑥중소기업	①출연기관, ②대학, ⑥중소기업	①출연기관, ②대학, ⑥중소기업
사업 추진체계	산기평 지원, 단일과제형(출연(연), 대학, 산업체 공동 연구)	산기평 지원, 총괄과제형(출연(연), 대학, 산업체 공동 연구)	산기평 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)	연구재단 지원 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	대형화재, 무인대응	대형화재, 인명탐지	재난, 무인기	대형화재, 인명탐지
대응재난	대형화재	대형화재	대형화재	대형화재
화재유형/ 임무공간	고층건물/실외	공장·물류창고/실내	불특정 화재현장/ 실내·외	공장·물류창고/실내
수행임무/ 수행방식	화재진압/단독임무	화재진압 및 인명탐지/단독임무	화재진압, 실외 관측, 실내 인명탐색/ 단독임무	초기진화 이후 실내수색(인명탐지, 소방대원 진입여부 판단 등) /협업임무
무인이동체 솔루션	무인기(드론) 통해 접근어려운 고층건물에 소화탄 투척	4족 보행로봇을 통한 화재진압·인명수색	무인기(멀티콥터) 적용하여 화재관측 및 탐색	이기종(드론·UGV) 무인이동체 협업을 통한 실내수색 솔루션
개발체계	소화탄 투척 드론	화재진압 및 인명탐지 4족 보행로봇	실내외 관측·수색 무인기	실내수색 드론, 상대항법 및 통신중계 UGV, 지상통제시스템 및 통신시스템

- (본사업↔비교사업1) 비교사업인 "난접근성 특수화재 진화를 위한 고기능성 소화탄 및 무인 능동진압 기술개발사업"은 사업 추진체계, 대응화재의 유형, 수행임무, 개발체계에서 본 사업과 차별화됨
 - (추진체계) 본 사업은 각 기술개발과제를 체계종합하여 현장에 용이하게 적용하기 위해 사업단 방식으로 추진, '비교사업1'은 단일과제형으로 개발한 소화탄을 상용드론에 최적화하는 연구는 있으나, 임무현장 요구에 최적화된 체계를 개발하는 연구는 부재하여 차별화됨
 - (대응화재 유형) 본 사업은 공장·물류창고 등에서 발생한 대형화재에 대하여 대응하나, '비교사업1'은 고층건물 화재에 대응하여 차별화됨
 - (수행임무) '비교사업1'은 대형화재시 드론이 소화탄을 투척하는 임무를 개발, 본 사업은 드론과 UGV의 협업을 통해 신속히 실내를 수색하여 요구조자 위치, 화점위치, 건물위험도 및 수색 경로 등을 제공함으로써 효율적이며 안전한 실내수색을 지원하는 임무 수행
 - * 특히, 비교사업1은 20kg 이상 소화탄을 투하하는 임무이고 본 사업은 고온/다습/비 가시 환경에서 20분 이상 비행이 요구되는 실내수색 임무를 수행함
 - (개발체계) 개발체계 측면에서 본 사업은 화재초진 후 실내수색을 위한 드론, UGV, 통제·통신시스템을 개발하지만, '비교사업1'은 고 기능성 소화탄과 이를 탑재한 드론을 실증하는 연구로 차별화됨
 - * 드론을 중심으로 비교하더라도 비교사업1은 소화탄 투하를 위해 대형드론이 개발되며 실내비행 및 고온/다습 환경임무는 요구되지 않음. 반면 본 사업은 정밀수색이 가능한 소형드론이고, 실내 및 고온/다습환경에서 20분간 임무수행해야하는 드론을 개발함

< 비교사업1과 본 기획사업(내역1) 차별성 >

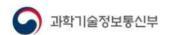
구분	[비교사업1] 난접근성 특수화재 진화를 위한 고기능성 소화탄 및 무인 능동진압 기술개발사업(산자부, 행안부, 과기부, 소방청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업목적	고층 건물, 혹은 원격지 대형화재를 효율적으로 진압할 수 있는 가스하이드레이트 소화탄과 능동진압 플랫폼 기술개발 지원	•	대형화재 초기진압 후 현장 탐색 및 요구조자 수색을 위한 육공 무인이동체 개발 및 실환경 운용실증
사업 주요내용	○사업예산 : 274.5억 ○사업기간 : 23~27 ○사업내용 : 고층 건물, 혹은 원격지 대형화재를 효율적으로 진압할 수 있 는 가스하이드레이트 소화탄 개발 및 AI기반 능동진압 플랫폼 기반 기술 확보	•	o사업예산: 200억 o사업기간: 25~29 o사업내용: 대형화재 초기진화 현장에서 화점·생존자 수색, 안전확인 등 임무를 협 력하는 드론, UGV 임무수행 체계 개발
지원대상	학·연·산	0	학·연·산
과제 선정방식	지정공모	0	지정공모
수행주체	①출연기관, ②대학, ⑥중소기업	0	①출연기관, ②대학, ⑥중소기업
사업 추진체계	산기평 지원, 단일과제형(출연(연), 대학, 산업체 공동 연구)	•	연구재단 지원 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	대형화재, 무인대응	•	대형화재, 무인이동체, 인명탐지
대응재난	대형화재	0	대형화재
화재유형/ 임무공간	고층건물/실외	•	공장·물류창고/실내
수행임무/ 수행방식	화재진압/협업임무(드론간)	•	초기진화 이후 실내수색(인명탐지, 소방대원 진입여부 판단 등) /협업임무(드론-UGV간)
무인이동 체 솔루션	무인기(드론) 통해 접근어려운 고층건물에 소화탄 투척	•	이기종(드론·UGV) 무인이동체 협업을 통한 실내수색 솔루션
개발체계	소화탄 투척 드론(대형, 실내비행 및 고온 장시간 비행 부재)	•	실내수색 드론(소형, 실내비행 및 고온 장시간 비행), 상대항법 및 통신중계 UGV, 지상통제시스템 및 통신시스템

^{*} 차별화 정도 : ○ (차이 없음) < ● < ● < ● < ● (100% 차별화)

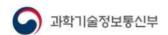

- (본사업↔비교사업2) 비교사업인 "소방용 4족 보행 로봇 기반 인명탐지화재진압 솔루션 개발 및 소방 로봇 센서 실증"은 사업 추진체계, 수행임무 및 수행방식, 제공솔루션 및 개발체계에서 차별화됨
 - (추진체계) '비교사업2'는 총괄과제 형식으로 추진되는 반면, 본 사업은 사업단 형식으로 추진되어 기존 원천기술의 적용*, 돌파기술 관리**, 리빙랩 운용관리가 용이하다는 측면에서 차별화됨
 - * (원천기술적용) 무인이동체원천기술개발사업의 약 60여개 과제가 본 사업에 연계
 - ** (돌파기술관리) 실내 상대항법, 고온/내열 등 극한플랫폼 기술 등 돌파기술 개발관리
 - (수행임무)'비교사업2'는 화재초기 진화현장에 투입되는 4쪽보행 로 봇개발하여 투입하지만, 본 사업은 화재진압 임무에 해당하지 않 고, 초기진화 이후 공중·육상 무인이동체 협업*을 통해 인명탐지와 소방대원의 현장진입 가능 여부를 파악하기 위한 임무를 수행하는 점에서 차별화 됨
 - * (이기종 자율협력) 단일 기종의 임무한계를 극복하고 이기종간 운영 시너지를 극대 화하기 위한 공중-육상 자율협력 기술 중점 개발
 - (솔루션) '비교사업2'는 소방현장에서 실내 지상 인명 수색 임무용 4족보행 로봇을 개발하고 있으나, 본 사업은 [●]실내 공중수색을 위 한 드론, ^②임무투입 이후 자율운용되며, 對드론 상대항법 지원 및 통신중계 임무까지 수행하는 UGV, ^③다수의 이동체에서 보내주는 정보를 활용한 협업운용이 가능한 통합관제시스템을 개발함
 - (개발체계) '비교사업2'는 소방현장 임무를 위해 육상플랫폼을 개발하고 있으나, 본 사업은 재난현장에서 신속한 수색이 가능한 공중 플랫폼과 임무·통신장비를 바탕으로 항법/수색/통신중계를 지원하는 육상플랫폼, 이를 통제하는 시스템을 개발하여 차별성이 높음

< 비교사업2와 본 기획사업(내역1) 차별성 >

기표시티스되 는 기국시티(네국I) 시골 0 /				
구분	[비교사업2] 소방용 4족 보행 로봇 기반 인명탐지 화재진압 솔루션 개발 및 소방 로봇 센서 실증(산자부, 행안부, 소방청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)	
사업목적	화재 현장 인명탐색과 화재진압 활동 지원을 위한 소방용 4족 보행 로봇 기술개발 및 현장실증	•	대형화재 초기진압 후 현장 탐색 및 요구조자 수색을 위한 육공 무인이동체 개발 및 실환경 운용실증	
사업 주요내용	○사업예산: 160억 ○사업기간: 23~28 ○사업내용: 소방용 4족 보행 로봇 기반 인명탐지·화재진압 솔루션 개발 및 소 방 로봇·센서 실증	•	○사업예산 : 200억 ○사업기간 : 25~29 ○사업내용 : 대형화재 초기진화 현장에서 화점·생존자 수색, 안전확인 등 임무를 협 력하는 드론, UGV 임무수행 체계 개발	
지원대상	학-연-산	0	학.연.산	
과제 선정방식	지정공모	0	지정공모	
수행주체	①출연기관, ②대학, ⑥중소기업	0	①출연기관, ②대학, ⑥중소기업	
사업 추진체계	산기평 지원, 총괄과제형(출연(연), 대학, 산업체 공동 연구)	•	연구재단 지원 사업단형(출연(연), 대학, 산업체 공동 연구)	
유사·중복 키워드	대형화재, 인명탐지	•	대형화재, 무인이동체, 인명탐지	
대응재난	대형화재	0	대형화재	
화재유형/ 임무공간	공장·물류창고/실내	0	공장·물류창고/실내	
수행임무/ 수행방식	화재진압 및 인명탐지/단독임무	•	초기진화 이후 실내수색(인명탐지, 소방대원 진입여부 판단 등) /협업임무(드론-UGV간)	
무인이동 체 솔루션	4족 보행로봇을 통한 화재진압·인명수색	•	이기종(드론·UGV) 무인이동체 협업을 통한 실내수색 솔루션	
개발체계	화재진압 및 인명탐지 4족 보행로봇	•	실내수색 드론, 상대항법 및 통신중계 UGV, 지상통제시스템 및 통신시스템	


^{*} 차별화 정도 : ○ (차이 없음) < ● < ● < ● (100% 차별화)

- (본사업↔비교사업3) 비교대상사업인 "국민안전감시 및 대응 무인 항공기 융합시스템 구축 및 운용"은 종료된 사업으로 본 사업과 사업목적, 임무공간, 수행임무, 개발체계 측면에서 차별화됨
 - (사업목적) '비교사업3'은 재난·치안용 무인기 기체와 핵심기술을 개발을 목적으로 하여 다양한 수요부처에 범용적용 가능한 기체를 개발, 본 사업은 대형화재 초기진화 후 임무에 적용 가능한 자율 협력 무인이동체를 개발하는 것으로 사업목적에 차이가 있음
 - (임무공간) 무인이동체가 투입되는 임무공간에 대한 요구조건에 있어서 '비교사업3'은 화재현장 외부에서 비행하는 드론으로 50℃수준의 온도조건을 극복해야하며, 본 사업은 화재현장 내부에서 비행해야하며, 온도 200℃ / 습도 100% 수준의 극한조건에서 운용이 요구됨
 - (수행임무) 대형화재 임무에 국한하여 볼 때 '비교사업3'은화재현장의 실외에서 관측임무를 수행하거나, 지하 등 공간에서 인명을 탐지하는 임무인 반면, 본 사업은 드론의 신속한 실내수색과 상대항법 및 통신중계를 지원하는 UGV의 협업을 바탕으로 대형화재 초기진화 이후 실내 요구조자, 붕괴여부, 소방대원에 실내수색 최적경로 제공 등 임무를 수행하여 차별화됨
 - (개발체계) '비교사업3'은 단일 무인기를 개발하는 한편, 본 사업은 고온·연무 등 극한조건에서도 신속한 실내수색을 위해 드론과 상대 항법·통신중계를 지원하는 UGV 협업체계를 개발하는 점에서 차별화


< 비교사업3과 본 기획사업(내역1) 차별성 >

구분	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업목적	재난현장에서 운용 가능한 재난·치안 임무용 무인기 기체 및 운항에 필요한 통신수단, 안전운항, 핵심기술, 무인기 운용 및 관리체계 개발로 국민안전 제고	•	대형화재 초기진압 후 현장 탐색 및 요구조자 수색을 위한 육공 무인이동체 개발 및 실환경 운용실증

구분	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업 주요내용	○사업예산: 390.78억 ○사업기간: 17~20 ○사업내용: 자연재해, 산업재해 등 다 양한 형태의 재난에 대해 다수의 부 처가 협력·대응하고 이를 통합적으로 관리할 수 있는 시스템 개발 및 구축	•	○사업예산 : 200억 ○사업기간 : 25~29 ○사업내용 : 대형화재 초기진화 현장에서 화점·생존자 수색, 안전확인 등 임무를 협 력하는 드론, UGV 임무수행 체계 개발
지원대상	학연산	0	학·연·산
과제 선정방식	지정공모	0	지정공모
수행주체	①출연기관, ②대학, ⑥중소기업	0	①출연기관, ②대학, ⑥중소기업
사업 추진체계	산기평 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)	0	연구재단 지원 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	재난, 무인기	•	대형화재, 무인이동체, 인명탐지
대응재난	대형화재	0	대형화재
화재유형/ 임무공간	불특정 화재현장/ 실외 50도 수준의 온도조건	•	공장·물류창고/실내 복사열 200도, 습도 100% 수준
수행임무/ 수행방식	화재진압, 실외 관측, 실내 인명탐색/ 단독임무	•	초기진화 이후 실내수색(인명탐지, 소방대원 진입여부 판단 등) /협업임무(드론-UGV간)
무인이동 체 솔루션	무인기(멀티콥터) 적용하여 화재관측 및 탐색	•	이기종(드론·UGV) 무인이동체 협업을 통한 실내수색 솔루션
개발체계	실내외 관측·수색 무인기	•	실내수색 드론, 상대항법 및 통신중계 UGV, 지상통제시스템 및 통신시스템

^{*} 차별화 정도 : ○ (차이 없음) < ● < ● < ● (100% 차별화)

③ 근해 해난사고 대응 무인이동체 개발

< 근해 해난사고 대응 무인이동체 개발 중복성 검토대상 사업 프로파일 >

구분	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	[비교사업4] 해양사고 신속대응 군집수색 자율수중로봇시스템 개발(해경청)	[비교사업5] 무인항공기 기반 해양안전 및 불법어업 수산생태계 관리기술 개발(해경청, 해수부)	[기획사업(내역2)] 근해 해난사고 대응 무인이동체 개발사업(과기부, 행안부, 해경청)
근거법령	과학기술기본법 제11조(국가연구개발사 업의 추진)	해양경찰법 제21조(연구개발의 지원 등)	과학기술기본법 제11조(국가연구개발사 업의 추진)	과학기술기본법 제11조(국가연구개발사 업의 추진)
기술개발 단계	응용/개발	응용/개발	개발	응용/개발
기술분야	항공	해양	항공	해양
투자방향 관련분야	국가전략기술	국가전략기술	국가전략기술	국가전략기술
사업목적	재난현장에서 운용 가능한 재난치안 임무용 무인기 기체 및 운항에 필요한 통신수단, 안전운항, 핵심기술, 무인기 운용 및 관리체계 개발로 국민안전 제고	4차 산업혁명 첨단기술을 활용한 해양사고에 신속하게 대응할 수 있는 해양안전로봇 개발로 해양사고 신속대응 체계 구축	해상임무 수행이 가능한 쿼드틸트윙(QTW) 무인항공기 기반 해양안전 및 불법어업·수산생태계 관리시스템 구축	근해 해난사고 발생시 신속대응 및 구조를 위한 공중·수상 무인이동체 개발 및 실환경 운용실증
사업 주요내용	○ 사업예산: 390.78억 ○ 사업기간: 17~20 ○ 사업내용 : 자연재해, 산업재해 등 다양한 형태의 재난에 대해 다수의 부처가 협력대 응하고 이를 통합적으 로 관리할 수 있는 시 스템 개발 및 구축	이사업예산: 246억 이사업기간: 21~25 이사업내용: SAS를 장착한 군집 지율무인잠수정(AUA) 개발과 수중 항법통신 통 합관제 운용시스템 개발 및 실해역 성능 검증을 통해 참몰시고 시 신속하고 인전 한 수중 수색 지원체계 구 축에 활용	○ 사업계산: 11493억 ○ 사업기간: 19~25 ○ 사업내용: 쿼드틸트윙 무 인항공기의 해상임무 수행을 위해 고속 자동비 행 및 원격조종이 기능한 추진시스템 및 탑재시스템 을 개발하고, 해상 표류물 인식·선박식별해양상황인 식 등 해양안전관리기술 개발	○ 사업예산 : 250억 ○ 사업기간 : 25~29 ○ 사업내용 : 해상상태 4 수준의 근해 해상 에서 자율협력하여 조난자를 신속히 수색 구조하는 드론 무인선, 자율구명정과 임무수 행 체계 개발
지원대상	학연산	학연산	학산	학연산
과제 선정방식	지정공모	지정공모	지정공모	지정공모
수행주체	①출연기관, ②대학, ⑥중소기업	①출연기관, ②대학, ⑥중소기업	①출연기관, ②대학, ⑥중소기업	①출연기관, ②대학, ⑥중소기업
사업 추진체계	산기평 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)	KIMST 지원 총괄과제형(출연(연), 대학, 산업체 공동 연구)	KIMST 지원, 총괄과제형(출연(연), 대학, 산업체 공동 연구)	연구재단 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	재난, 무인기	해양사고, 신속 대응, 자율로봇	무인항공기, 해양안전	해양사고, 수색구조
대응재난	해상재난	해난사고	해난사고/불법선박	해난사고
사고유형/ 임무공간	익수/연해	선박침몰/연근해	불법선박·익수/ 연근해·해상상태2	선박전복·침몰 등 익수/근해·해상상태4
수행임무/ 수행방식	해양경비·익수자 구조/단독임무	사고해역수중수색/협업 임무	불법어업·표류자 모니터링/단독임무	요구조자 수색 및 구조/협업임무
무인이동체 솔루션	무인기를 통한 해양경비 및 익수자 구난장비 투척	다수 AUV 협업을 통한 안전한 수중수색	무인기를 활용한 해양안전사고 모니터링	이기종(드론·USV) 무인이동체 협업 솔루션
개발체계	해안경비 및 구난장비 투척 멀티콥터 드론	광역·정밀 수중수색용 자율무인잠수정	수직이착륙 무인기	해양수색 및 USV 구조지원 드론, 수색·구조용 USV, 통제 및 통신시스템

- (본사업↔비교사업3) 비교대상사업인 "국민안전감시 및 대응 무인 항공기 융합시스템 구축 및 운용"은 종료된 사업으로 본 사업과 사업목적, 수행임무, 개발체계 측면에서 차별화됨
 - (사업목적) '비교사업3'은 재난·치안용 무인기 기체와 핵심기술 개발을 목적으로 하여 다양한 수요부처에 범용적용 가능한 기체를 개발, 본 사업은 근해 해난사고 골든타임 확보를 위한 공중·수상 협력 무인이동체를 개발하는 점에서 차별화됨
 - (수행임무) '비교사업3'은 해상재난 현장 모니터링 및 의사결정을 지원하는 무인항공기를 개발하는 것으로, 본 기획연구는 수상과 공중에서 무인이동체의 협력운용을 통해 골든타임을 확보한다는 점에서 차이가 있음
 - (개발체계) '비교사업3'은 단일 무인기를 개발하는 한편, 본 사업은 골든타임 확보가 중요한 근해 해난사고 상황에서 신속·장시간 수색과 인명구조를 위해 드론과 USV가 협업하는 체계를 개발하는 점에서 차별화
 - * USV-드론 도킹/언도킹 운용으로 장거리/장시간 수색임무 수행, 드론의 시야 및 통신중계를 통해 USV는 요구조자 정밀구조(자율구명정 정밀운항보조 및 직접구조) 수행

< 비교사업3과 본 기획사업(내역2) 차별성 >

구분	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업목적	재난현장에서 운용 가능한 재난·치안 임무용 무인기 기체 및 운항에 필요한 통신수단, 안전운항, 핵심기술, 무인기 운용 및 관리체계 개발로 국민안전 제고	•	근해 해난사고 발생시 신속대응 및 구조를 위한 공중·수상 무인이동체 개발 및 실환경 운용실증
사업 주요내용	○사업예산: 390.78억 ○사업기간: 17~20 ○사업내용: 자연재해, 산업재해 등 다 양한 형태의 재난에 대해 다수의 부 처가 협력·대응하고 이를 통합적으로 관리할 수 있는 시스템 개발 및 구축	•	○사업예산 : 250억 ○사업기간 : 25~29 ○사업내용 : 해상상태 4 수준의 근해 해 상에서 자율협력하여 조난자를 신속히 수색·구조하는 드론, 무인선, 자율구명정 과 임무수행 체계 개발
지원대상	학연산	0	학연산
과제 선정방식	지정공모	0	지정공모

구분	[비교사업3] 국민안전감시 및 대응 무인항공기 융합시스템 구축 및 운용(과기부, 산자부, 소방청, 해경청, 경찰청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
수행주체	①출연기관, ②대학, ⑥중소기업	0	①출연기관, ②대학, ⑥중소기업
사업 추진체계	산기평 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)	0	연구재단 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	재난, 무인기	•	해양사고, 수색구조
대응재난	해상재난	0	해난사고
사고유형/ 임무공간	익수/연해	•	선박전복·침몰 등 익수/근해·해상상태4
수행임무/ 수행방식	해양경비·익수자 구조/단독임무	•	요구조자 수색 및 구조/협업임무
무인이동 체 솔루션	무인기를 통한 해양경비 및 익수자 구난장비 투척	•	이기종(드론·USV) 무인이동체 협업 솔루션
개발체계	해안경비 및 구난장비 투척 멀티콥터 드론	•	해양수색 및 USV 구조지원 드론, 수색·구조용 USV, 통제 및 통신시스템

- * 차별화 정도 : (차이 없음) < < < < (100% 차별화)
 - (본사업↔비교사업4) 비교대상사업인 "해양사고 신속대응 군집수색 자율수중로봇시스템 개발"은 사업추진체계, 수행임무 등에 차별성 있음
 - (추진체계) '비교사업4'는 총괄과제 형식으로 추진되는 반면, 본 사업은 사업단 형식으로 추진되어 기존 원천기술의 적용*, 돌파기술 관리**, 리빙랩 운용관리가 용이하다는 측면에서 차별화됨
 - * (원천기술적용) 무인이동체원천기술개발사업의 약 60여개 과제가 본 사업에 연계
 - ** (돌파기술관리) Sea State4에서 조난자 구조 기술, 조난자 구조를 위한 파랑중 근거리 자율운항기술 등 돌파기술 개발관리
 - (수행임무) '비교사업4'는 수중으로 침몰한 선박 등에 대한 수중탐 색을 중심으로 임무를 수행하며, 본 기획사업은 해난사고시 수상 과 공중 무인이동체의 협력운용을 통해 골든타임을 확보하는 점에 서 임무내용에 차이가 있음

< 비교사업4와 본 기획사업(내역2) 차별성 >

구분	[비교사업4] 해양사고 신속대응 군집수색 자율수중로봇시스템 개발(해경청)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업목적	4차 산업혁명 첨단기술을 활용한 해양사고에 신속하게 대응할 수 있는 해양안전로봇 개발로 해양사고 신속대응 체계 구축	•	근해 해난사고 발생시 신속대응 및 구조를 위한 공중·수상 무인이동체 개발 및 실환경 운용실증
사업 주요내용	○사업예산 : 246억 ○사업기간 : 21~25 ○사업내용 : SAS를 장착한 군집 자율 무인잠수정(AUVs) 개발과 수중 항법· 통신· 통합관제 운용시스템 개발 및 실해역 성능 검증을 통해 침몰사고 시 신속하고 안전한 수중 수색 지원 체계 구축에 활용	•	○사업예산 : 250억 ○사업기간 : 25~29 ○사업내용 : 해상상태 4 수준의 근해 해 상에서 자율협력하여 조난자를 신속히 수색·구조하는 드론, 무인선, 자율구명정 과 임무수행 체계 개발
지원대상	학연산	0	학연산
과제 선정방식	지정공모	0	지정공모
수행주체	①출연기관, ②대학, ⑥중소기업	0	①출연기관, ②대학, ⑥중소기업
사업 추진체계	KIMST 지원 총괄과제형(출연(연), 대학, 산업체 공동 연구)	•	연구재단 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	해양사고, 신속 대응, 자율로봇	•	해양사고, 수색구조
대응재난	해난사고	0	해난사고
사고유형/ 임무공간	선박침몰/연근해	•	선박전복·침몰 등 익수/근해·해상상태4
수행임무/ 수행방식	사고해역수중수색/협업임무	•	요구조자 수색 및 구조/협업임무
무인이동 체 솔루션	다수 AUV 협업을 통한 안전한 수중수색	•	이기종(드론·USV) 무인이동체 협업 솔루션
개발체계	광역 정밀 수중수색용 자율무인잠수정	•	해양수색 및 USV 구조지원 드론, 수색·구조용 USV, 통제 및 통신시스템

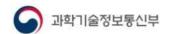
- * 차별화 정도 : O (차이 없음) < () < () < () < () (100% 차별화)
 - (본사업↔비교사업5) 비교대상사업인 "무인항공기 기반 해양안전 및 불법어업 수산생태계 관리기술 개발"은 사업추진체계, 수행임무, 개발체계 등에 차별성 있음
 - (추진체계) '비교사업5'는 총괄과제 형식으로 추진되는 반면, 본 사업은 사업단 형식으로 추진되어 기존 원천기술의 적용, 돌파기술 관리, 리빙랩 운용관리가 용이하다는 측면에서 차별화됨

- (수행임무) '비교사업5'는 불법선박 및 익수 표류자를 유인세력이 신속히 구조할 수 있도록 모니터링하는 임무를 수행하며, 본 사업 은 근해 해난사고 요구조자를 골든타임 내 구조하는 임무를 수행 하여 차별화됨
- (개발체계) '비교사업5'는 단일 무인기를 개발하여 임무를 수행하는 한편, 본 사업은 도킹/언도킹 운용을 바탕으로 수색범위·시간이 향상되며, 시야확보·통신중계 등 협업을 통해 익수자를 구조하는 드론-USV 협업체계를 개발하는 점에서 차별화됨

< 비교사업5와 본 기획사업(내역2) 차별성 >

구분	[비교사업4] 무인항공기 기반 해양안전 및 불법어업 수산생태계 관리기술 개발(해경청, 해수부)	차별 화강 도	[기획사업(내역1)] 화재현장 실내수색용 시야개선 영상장비 탑재 드론 및 UGV, 지상 운용시스템 개발 (과기부, 행안부, 소방청)
사업목적	해상임무 수행이 가능한 쿼드틸트윙(QTW) 무인항공기 기반 해양안전 및 불법어업·수산생태계 관리시스템 구축	•	근해 해난사고 발생시 신속대응 및 구조를 위한 공중·수상 무인이동체 개발 및 실환경 운용실증
사업 주요내용	○사업예산 : 114.93억 ○사업기간 : 19~25 ○사업내용 : 쿼드틸트윙 무인항공기의 해상임무 수행을 위해 고속 자동비행 및 원격조종이 가능한 추진시스템 및 탑재시스템을 개발하고, 해상 표류물 인식·선박식별·해양상황인식 등 해양안 전관리기술 개발	•	○사업예산 : 250억 ○사업기간 : 25~29 ○사업내용 : 해상상태 4 수준의 근해 해 상에서 자율협력하여 조난자를 신속히 수색·구조하는 드론, 무인선, 자율구명정 과 임무수행 체계 개발
지원대상	학산	•	학연산
과제 선정방식	지정공모	0	지정공모
수행주체	①출연기관, ②대학, ⑥중소기업	0	①출연기관, ②대학, ⑥중소기업
사업 추진체계	KIMST 지원, 총괄과제형(출연(연), 대학, 산업체 공동 연구)	•	연구재단 지원, 사업단형(출연(연), 대학, 산업체 공동 연구)
유사·중복 키워드	무인항공기, 해양안전	•	해양사고, 수색구조
대응재난	해난사고/불법선박	0	해난사고
사고유형/ 임무공간	불법선박·익수/ 연근해·해상상태2	•	선박전복·침몰 등 익수/근해·해상상태4
수행임무/ 수행방식	불법어업·표류자 모니터링/단독임무	•	요구조자 수색 및 구조/협업임무
무인이동 체 솔루션	무인기를 활용한 해양안전사고 모니터링	•	이기종(드론·USV) 무인이동체 협업 솔루션
개발체계	수직이착륙 무인기	•	해양수색 및 USV 구조지원 드론, 수색·구조용 USV, 통제 및 통신시스템

* 차별화 정도 : ○ (차이 없음) < ● < ● < ● < ● (100% 차별화)


5

사업 추진방법

(1) 추진절차 및 내용

추진절차	시행주체	절차내용
① 사업기획	과기정통부(주관)	○기획보고서 작성(협력 및 수요부처인 행안부, 소 방청, 해경청과 협업하여 작성)
② 사업시행 공고	과기정통부(주관), 한국연구재단	○사업 세부추진계획 확정.공고 - 사업안내서, 과제제안요구서(RFP) 포함
Ţ	,	
③ 과제신청.접수	연구기관, 한국연구재단	○ 연구기관 : 신규과제 연구개발계획서 작성.신청 ○ 한국연구재단 : 접수
④ 과제선정.평가	한국연구재단	○ 사전검토 → 전문가 평가(발표심사) → 선정결과 확정(과기정통부)
<u>, </u>	,,	
⑤ 협약체결	연구기관, 한국연구재단	○연구개발과제 협약 체결
Ţ		
⑥ 진도관리	한국연구재단	○ 진도관리(연차점검, 중간평가, 실증 등)
Ţ	,	
⑦ 최종평가	한국연구재단	○ 연구결과 최종평가
Ţ	,	
⑧ 사업결과 활용	정부·민간 기타	○정부 및 민간의 성과활용(기술이전 등)

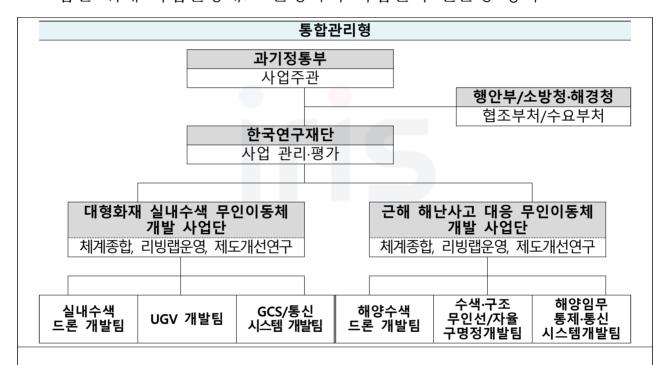
- ① (사업기획) 무인이동체 연구개발 전략이 수립되었으며 이와 관련하여 재 난현장 적용을 위한 육해공 무인이동체 개발사업을 위한 기획(안) 마련
 - 재난안전 대형화 등 국민과 현장요원들의 안전 확보 및 피해저감을 위해 다부처 협력으로 예산확보 추진
- ② (사업시행 공고) 사전 사업기획을 통해 도출된 무인이동체 협력체계 개발 사업 안내서와 과제제안요구서를 확정하고 공고함
 - * 과제제안요구서 작성 시 성능목표 달성을 위한 시험의 시나리오, 절차, 검증 방법, 시험성적서 요구 여부 등을 구체화하여 반영

- ③ (과제신청, 접수) 각 연구기관에서 신규과제 연구개발계획서를 작성하여 연구재단에 접수
- ④ (과제선정, 평가) 평가위원회를 통해 연구자들의 제안서에 대한 평가를 실시하여 과제 선정

< 평가지표(안) >

평가항목	평가지표	배점		
협력 무인이동체 개발 체계성	대형화재, 근해사고 등 재난현장의 특수한 상황에 대한 이해도가 높은가?	10		
(20)	무인이동체 협력운용 체계에 대한 이해도가 높은가?	10		
계획의 타당성 (30)	연구개발을 통해 현장에 적용가능한 무인이동체 협력체 계를 개발하기 위한 목표와 개발계획 및 수행계획을 명 확하고 구체적으로 제시하였는가?			
(30)	제시한 방법론은 무인이동체 협력운용 및 재난현장에서 실현가능성이 있는가?	10		
추진체계 및 전략의 적정성 (10)	참여기관간 역할 분담 및 협업체계는 체계적이고 효율 적으로 제시되었는가?	10		
연구팀 구성의 우수성 (15)	연구책임자를 비롯한 공동연구원과 소속기관은 충분한 연구개발 역량을 가지고 있는가?	10		
(13)	연구팀의 보유시설 및 장비활용 계획은 적절한가?	5		
결과활용	무인이동체 협력체계 개발로 현장요원 및 국민의 안전 체감도 향상의 가능성이 있는가?	20		
(25)	공공부문의 무인이동체 활용확대를 촉진하여 무인이동 체 산업 성장, 이에 따른 고용 및 일자리 창출 등 파급 효과를 지니고 있는가?	5		
합계				

- 평가방향 : 재난현장에 적용가능한 무인이동체 협력운용 체계개발에 적합한 연구개발계획(안)이 도출되었으며, 개발계획 내용 및 활용계획이 구체적이고 실현가능성이 높은 과제 선정
- 평가방법 : 전문가 서면검토 및 발표평가
- 평가항목 : 협력 무인이동체 개발 체계성, 연구계획의 타당성, 최종 결과물의 활용 가능성, 연구진 역량의 우수성 등을 종합적으로 평가

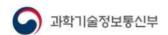

- 평가위원회 구성 : 무인이동체 관련 산학연 전문가, 재난현장 전문가 등으로 평가위원회를 구성
- ⑤ (협약체결) 연구개발과제 주관기관-한국연구재단 협약 체결
- ⑥ (진도관리) 제시한 과제계획서에 따른 연구자 연구 수행, 연차점검, 요 구도 관리, 실증 등
- ⑦ (최종평가) 최종평가를 통해 성과목표 달성 여부 평가
- ⑧ (사업결과 활용) 연구과정에서 확보된 기술 및 데이터 등은 표준 화를 통해, 연구자 및 기업 등에 공개해 후속연구에 활용할 수 있도록 성과 확산

[2] 사업추진체계

- □ (추진체계) (주관)과기정통부/(협조)행안부/(수요)소방청, 해경청 →(전문기관)
 한국연구재단→(수행기관) 사업단(공모)→산・학・연 연구자(공모)
- □ (추진방식) 지정공모, 현장참여체계 구축, 사업단 방식으로 운영
 - (현장 참여체계) 현장에 활용될 수 있는 무인이동체 개발을 위해 소방 청, 해경청 등의 현장요원의 기획·R&D·실증 전주기 참여체계 구축
 - (사업단 운영) 현장의견의 충실한 반영 및 임무용 무인이동체 체계종 합을 위해 사업단형태로 운영하여 사업관리 전문성 강화

< 추진체계 주체별 역할 및 구성(안) >

	구분	추진체계상 역할
주관기관	과기정통부	R&D, 시제품 개발 및 실증 등 사업 총괄
	(협조부처)행안부	무인이동체 현장실증 지원, 현장적용 관련 제도개선
참여기관	(수요부처)소방청·해경청	리빙랩 참여, 현장 적용성 점검, 현장적용을 위한 매뉴얼 개선 및 현장적용
전문기관	한국연구재단	사업관리 및 지원
사업단	공모	세부과제 연구개발 요구도 관리 및 실증
연구자	공모	세부과제 연구개발 및 실증


6

현장부처(소방청·해경청) 리빙랩 운영계획

[1] 화재현장 실내수색 무인이동체 개발 리빙랩 운영계획

① 리빙랩 추진 방향

- **(운영방향)** 현장 소방대원 중심으로 리빙랩을 운영하며, 실환경· 임무환경 기반의 현장실증과 현장의견 반영 극대화
 - 요구기능·성능에 대한 정량적 점검과 함께 소방대원의 운용성에 대한 검증과 피드백, 매뉴얼 개발·소방대원 운용교육 등 현장화에 필요한 요 건들 종합검토할 수 있도록 리빙랩 추진
- (실증장소) 실환경 모사실증 및 소방서 배치운영 실증을 위해 중앙 소방학교 및 공장·물류센터 밀집지역 관할 소방서(공모)에서 실증
 - 실환경 실증 장소 : 중앙소방학교, 국립재난안전연구원(필요시 협조)
 - 운영실증 장소 : 연구추진 과정에서 배치운영 실증 소방서 내부공모
- (리빙랩 구성 및 역할) 화재현장 실내수색 무인이동체 개발 리빙 랩은 연구수행기관, 119리빙랩 대원, 전문가 등으로 구성하여 운영
 - (연구수행기관) 리빙랩 운영 주관, 리빙랩 운영 및 실증 관련 사전협의 및 현장요건 점검, 무인이동체 운용 시연, 리빙랩 피드백 반영
 - (119리빙랩 대원) 리빙랩 전과정 참여, 임무현장 운용 검증, 개선 및 보완 의견 제시
 - (전문가) 리빙랩 운용 모니터링, 리빙랩 완성도를 위한 체크사항 점검, 리 빙랩 성과 달성 여부 점검, 개선 및 보완의견 제시(기술·제도적 사항 포괄)
 - * 리빙랩 참여 전문가는 5인으로 하되, 과기부 2인(기술관점), 행안부 1인(제도개선 관점), 소방청 2인(현장적용/운용 관점)을 각각 추천하여 구성
- (리빙랩 추진절차) 무인이동체 운영 및 환류 → 평가 → 사후관리

② 리빙랩 운영단계별 추진내용

구분	세부 구분	추진내용				
	① 실증시나리오 작성	 연구진에서 사전기획된 임무시나리오 및 요구사항 등을 바탕으로 실증시나리오 작성 소방청의 협조로 실증장소 및 실증위원(리빙랩위원) 준비 연구진, 전문가, 소방대원의 실증체크 항목 점검(운용관점, 기능관점, 제도개선 관점 등) 				
① 운영	② 화재현장 실내수색 무인이 동체 시연	• 연구수행기관에서 화재현장 실내수색 무인이동체 시연회 개최 • 시연결과를 바탕으로 개선방안 도출 • 이해관계자 간 소통을 통해 실험 진행에 대한 아이디어 제안				
및 환류	③ 화재현장 실내수색 무인이 동체 리빙랩 운영	및 수렴, 토론 진행, 실현 가능성 검토 등 진행 • 기능실증 진행 후 현장배치 실증 진행, 주기적으로 운용에 대한 점검과 개선의견 교류 • 반기별 1회 리빙랩 참여 소방대원 외 119리빙랩 소속 소방대원이 실증 과정 참여하여 다양한 의견 수렴 • 현장 배치실증을 통해 개선된 운용성, 기능, 제도 관련 사항을 반영하여 현장 최적화				
	④ 최종 성과물 적용	• 연구수행기관의 개발기술 최종 성과물의 현장적용 및 평가				
	① 1차 만족도 조사 수행	• 리빙랩 소속 소방대원을 대상으로, 화재현장 실내수색 무인이동 체의 임무현장 목표달성 여부와 관련한 1차 만족도 설문조사 실시				
② 평가	② 2차(최종) 만족도 조사 수행	• 리빙랩 참여 소방대원을 포함한 현장대원을 대상으로, 최종 개발 무인이동체, 임무목표 달성 여부와 관련한 2차(최종) 만족 도 설문조사 실시				
	③ 재난 임무 목표달성 기여도 조사 수행	• 소방요원, 재난현장 관리자, 전문가 등을 대상으로, 개발된 무인이동체의 임무목표 달성 기여도를 조사(소방대원 위험도 감소, 실내수색 시간 단축, 임무 완성도 등)				
	① 모니터링을 통한 기술지원, 운영관리 및 유지보수	• 성과평가 및 대내외 피드백 결과를 기반으로 지속적 기술 보 완 및 모니터링 시행				
	② 컨설팅 및 사후교육	• 사업 종료 후, 사업이 지속 운영될 수 있도록 맞춤형 컨설팅 및 현장 소방대원 대상 무인이동체 운용교육 등을 추가 실시				
③ 사후	③ 지속적인 이해관계자 네트 워크 확산	• 연구종료 후에도 연구자·소방청, 행안부, 과기부 등이 협업 가능한 지속적인 협력플랫폼을 구성하여, 지속적인 논의구조 구축				
관리	④ 프로젝트 DB 및 기록 구축	• 프로젝트의 모든 추진과정(실험 데이터 등 포함)을 기록 및 축적할 수 있는 기반을 마련하여, 향후 추진될 프로젝트 확산에 기여				
	⑤ 성과 공유 및 확산 방안	 우수 연구성과 확산 및 공유를 통한 대내외 홍보·협력 확대 제품의 안정적 정착 혹은 실사업화로 연계될 수 있도록 기술의 완성도 확인 및 적용 가능성 검토, 지속가능한 효용 가치 방안 창출 				

※ 리빙랩 추진계획은 사업기획 고도화 단계에서 상세화 예정

③ 리빙랩 관리방안

- (리빙랩 관리지표) 화재현장 실내수색 무인이동체 개발 리빙랩이 리빙랩 목적달성을 위해 체계적으로 운영되는지 점검
 - 감독기관 및 연구수행기관이 과제사업을 효율적으로 운영·점검·관리할 수 있도록 체크리스트 형식으로 구성
 - 사업 유형 및 계획에 따라 유연성 있게 구성되며, 운영기획 및 관리, 모니터링 및 사후관리 절차 등에 따라 관리항목이 구분 및 조정
 - 관리지표의 적용은 감독기관(부처추천 전문가)과 연구기관으로 구분
 - * (감독기관) 무인이동체 개발 연구 총괄, 감독, 확인하는 관리적 내용 반영
 - ** (연구기관) 무인이동체 리빙랩 추진 시 연구기관에서 해야 할 관리적 내용 반영

< 관리지표 >

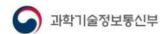
		3)
①단계	②체크리스트 (○ 확인, △ 참조)	연구기관	감독기관
	• 리빙랩 운영계획을 구체화했는가?	0	Δ
	• 실증 방안은 정의되었는가?	0	0
	• 실증 참여 소방대원에 대한 보상 방안은 마련되었는가?	0	0
	• 무인이동체 개발 성공에 대해 정의하고, 모두 합의하였는 가?	0	0
	• 리빙랩 구성원에게 리빙랩의 목적, 범위 등을 충분히 이해 시켰는가?	0	Δ
	• 리빙랩 실증 범위, 이해관계자 범위, 주체별 역할, 실증방식 등에 대한 협의가 충분히 이루어졌는가?	0	Δ
운영·환류	• 임무에 대한 상황을 인지했는가?	0	0
	• 임무 실증결과에 대해 이해했는가?	0	0
	• 현장의견을 훼손하진 않고 취합할 수 있는 방법을 강구했는가?	0	Δ
	• 리빙랩 추진 공간에 대한 협의는 이루어졌는가?	0	Δ
	• 리빙랩 운영 일정은 결정되었는가?	0	Δ
	• 리빙랩 운영이 추진 일정에 따라 진행되고 있는가?	0	0
	• 리빙랩 목적과 기획 방향에 부합하도록 운영되고 있는가?	0	0

①단계	②체크리스트 (○ 확인, △ 참조)	3		
UL'AI		연구기관	감독기관	
	• 리빙랩 운영과정에서 계획 변경 등 문제는 없으며, 문제 발생 시 해결방안이 타당하게 제시되고 있는가?	0	0	
	• 구체적인 리빙랩 활동과 성과는 무엇인가?	0	0	
	• 적절한 방식으로 현장의 의견을 수렴했는가?	0	Δ	
	• 무인이동체 시제기를 운영하는가?	0	0	
	• 리빙랩 참여자에 대한 만족도 조사의 기준이 적절한가?	0	Δ	
	• 조사는 적합한 주체와 방식을 통해 이루어지고 있는가?	0	Δ	
	• 과정별로 리빙랩 참여자의 만족도를 평가했는가? (설문조 사 등)	0	0	
	• 최종 무인이동체 시제기를 개발 완료하였는가?	0	0	
	• 리빙랩 참여자에 대한 기여도 조사의 기준이 적절한가?	0	Δ	
	• 조사는 적합한 주체와 방식을 통해 이루어지고 있는가?	0	Δ	
	• 리빙랩 참여자의 최종 만족도를 평가하였는가? (설문조사 등)	0	0	
	• 리빙랩 참여자가 무인이동체의 임무완수에 대한 기여도를 평가하였는가? (설문조사 등)	0	0	
사후관리	• 평가결과는 개발된 무인이동체의 수용성 제고를 위해 기술 개선에 활용되고 있는가?	0	Δ	
	• 리빙랩의 목적을 달성했다고 판단할 수 있는 객관적인 방법을 찾아냈는가?	0	Δ	
	• 최종 결과를 어떤 방식으로 표현할 것인가?	0	0	
	• 향후 개선되거나 보완되어야 할 사항은 무엇인가?	0	Δ	
	• 지속적인 모니터링과 점검을 하고 있는가?	0	Δ	

- (리빙랩 성과지표) 리빙랩을 통해 무인이동체 개발의 당초목표(대 형화재 초기진화 후 실내수색 임무 완수)를 달성하였는지 평가
 - (무인이동체 개발) 무인이동체 소방대원들이 요구한 성능 대비 실제성 능이 구현되었는지에 대한 달성도 측정
 - (임무목표 달성도) 개발한 무인이동체가 대형화재 초기진화 후 실내수 색 임무를 달성할 수 있을 것인지를 소방대원의 평가로 측정
 - (임무실증 완성도) 임무실증 과정에서 당초 리빙랩 실증을 통해 계획한 목표 실증횟수를 실제 충족했는지, 리빙랩 구성원인 소방대원 및 전문 가가 제시한 기능·운용·제도 등에 대한 의견을 충실히 반영했는지 측정

구분	성과지표	측정방법	목표값	가중치
무인이동체 개발	성능목표 달성도	무인이동체 실제성능(실적)/무인이동체 성능목표(계획)x100	80	0.3
임무목표 달성도	소방대원 만족도	실증참여 소방대원 대상 만족도 조사 리커트척도 5점의 평균값(100점 환산)	80	0.4
임무실증	실증 충실도	실제 현장실증 횟수(실적)/목표 현장실증 횟수(계획)x10	80	0.15
완성도	리빙랩 구성원(소방대원·전 문가) 의견 반영도	리빙랩 구성원 의견반영 건수(실적)/현장의견 제출 건수x100	80	0.15

④ 향후 활용 계획


- 매뉴얼 개발 및 소방대원 대상 교육훈련 추진(~30년)
- 무인이동체 생산기업 기술이전 및 양산을 위한 구매조달 연계 지원
- 무인이동체 시범운용 사업을 추진하여 운용 소방서 확대
 - 실증참여 관서 중심 운용에서 공장·물류창고 밀집 지역 관할 소방서로 확대
 - * 확산계획(안) ('30) 5개서 \rightarrow ('31) 10개서 \rightarrow ('35) 50개서(공장/물류창고 밀집 관할 소방서)
- 예산확보 : 지자체 소방안전교부세 우선 적용 협의

(2) 근해 해난사고 대응 무인이동체 개발 리빙랩 운영계획

① 리빙랩 추진 방향

- (운영방향) 현장 해경대원 중심으로 리빙랩을 운영하며, 실환경· 임무환경 기반의 현장실증과 현장의견 반영 극대화
 - 요구기능·성능에 대한 정량적 점검과 함께 해경대원의 운용성에 대한 검증과 피드백, 매뉴얼 개발·해경대원 운용교육 등 현장화에 필요한 요건들 종합검토할 수 있도록 리빙랩 추진
- (실증장소) 실환경 모사실증 및 해양경찰서 배치운영 실증을 위해 해경 연구센터 및 어선전복사고 집중발생 구역 관할 해양경찰서 (공모)에서 실증
 - 실환경 실증 장소 : 해양경찰청 연구센터, 국립재난안전연구원(필요시 협조)
 - 운영실증 장소 : 연구추진 과정에서 배치운영 실증 해양경찰서 내부공모
- (리빙랩 구성 및 역할) 근해 해난사고 대응 무인이동체 개발 리 빙랩은 연구수행기관, 오션리빙랩 대원, 전문가 등으로 구성하여 운영
 - (연구수행기관) 리빙랩 운영 주관, 리빙랩 운영 및 실증 관련 사전협의 및 현장요건 점검, 무인이동체 운용 시연, 리빙랩 피드백 반영
 - (오션리빙랩 대원) 리빙랩 전과정 참여, 임무현장 운용 검증, 개선 및 보 완 의견 제시
 - (전문가) 리빙랩 운용 모니터링, 리빙랩 완성도를 위한 체크사항 점검, 리 빙랩 성과 달성 여부 점검, 개선 및 보완의견 제시(기술·제도적 사항 포괄)
 - * 리빙랩 참여 전문가는 5인으로 하되, 과기부 2인(기술관점), 행안부 1인(제도개선 관점), 해경청 2인(현장적용/운용 관점)을 각각 추천하여 구성
- (리빙랩 추진절차) 무인이동체 운영 및 환류 → 평가 → 사후관리

② 리빙랩 운영단계별 추진내용

구분	세부 구분	추진내용
	① 실증시나리오 작성	 연구진에서 사전기획된 임무시나리오 및 요구사항 등을 바탕으로 실증시나리오 작성 해경청의 협조로 실증장소 및 실증위원(리빙랩위원) 준비 연구진, 전문가, 해경대원의 실증체크 항목 점검(운용관점, 기능관점, 제도개선 관점 등)
	② 근해 해난사고 대응 무인이	• 연구수행기관에서 근해 해난사고 대응 무인이동체 시연회 개최
① 운영 및 환류	동체 시연 ③ 근해 해난사고 대응 무인이 동체 리빙랩 운영	 시연결과를 바탕으로 개선방안 도출 이해관계자 간 소통을 통해 실험 진행에 대한 아이디어 제안 및 수렴, 토론 진행, 실현 가능성 검토 등 진행 기능실증 진행 후 현장배치 실증 진행, 주기적으로 운용에 대한 점검과 개선의견 교류 반기별 1회 리빙랩 참여 해경대원 외 오션리빙랩 소속 소방대원이 실증 과정 참여하여 다양한 의견 수렴 현장 배치실증을 통해 개선된 운용성, 기능, 제도 관련 사항을 반영하여 현장 최적화
	④ 최종 성과물 적용	• 연구수행기관의 개발기술 최종 성과물의 현장적용 및 평가
	① 1차 만족도 조사 수행	• 리빙랩 소속 해경대원을 대상으로, 근해 해난사고 수색 및 구조 무인이동체의 임무현장 목표달성 여부와 관련한 1차 만족도 설문 조사 실시
② 평가	② 2차(최종) 만족도 조사 수행	• 리빙랩 참여 해경대원을 포함한 현장대원을 대상으로, 최종 개발 무인이동체, 임무목표 달성 여부와 관련한 2차(최종) 만족 도 설문조사 실시
	③ 재난 임무 목표달성 기여도 조사 수행	• 해경대원, 재난현장 관리자, 전문가 등을 대상으로, 개발된 무인이동체의 임무목표 달성 기여도를 조사(요구조자 수색 시간단축, 악기상 중 임무수행시간 증가, 임무 완성도 등)
	① 모니터링을 통한 기술지원, 운영관리 및 유지보수	• 성과평가 및 대내외 피드백 결과를 기반으로 지속적 기술 보 완 및 모니터링 시행
	② 컨설팅 및 사후교육	• 사업 종료 후, 사업이 지속 운영될 수 있도록 맞춤형 컨설팅 및 현장 해경대원 대상 무인이동체 운용교육 등을 추가 실시
③ 사후	③ 지속적인 이해관계자 네트 워크 확산	• 연구종료 후에도 연구자·해경청, 행안부, 과기부 등이 협업 가능한 지속적인 협력플랫폼을 구성하여, 지속적인 논의구조 구축
관리	④ 프로젝트 DB 및 기록 구축	• 프로젝트의 모든 추진과정(실험 데이터 등 포함)을 기록 및 축적할 수 있는 기반을 마련하여, 향후 추진될 프로젝트 확산에 기여
	⑤ 성과 공유 및 확산 방안	 우수 연구성과 확산 및 공유를 통한 대내외 홍보·협력 확대 제품의 안정적 정착 혹은 실사업화로 연계될 수 있도록 기술의 완성도 확인 및 적용 가능성 검토, 지속가능한 효용 가치 방안 창출

※ 리빙랩 추진계획은 사업기획 고도화 단계에서 상세화 예정

③ 리빙랩 관리방안

- (리빙랩 관리지표) 근해 해난사고 대응 무인이동체 개발 리빙랩이 리빙랩 목적달성을 위해 체계적으로 운영되는지 점검
 - 감독기관 및 연구수행기관이 과제사업을 효율적으로 운영·점검·관리할 수 있도록 체크리스트 형식으로 구성
 - 사업 유형 및 계획에 따라 유연성 있게 구성되며, 운영기획 및 관리, 모니터링 및 사후관리 절차 등에 따라 관리항목이 구분 및 조정
 - 관리지표의 적용은 감독기관(부처추천 전문가)과 연구기관으로 구분
 - * (감독기관) 무인이동체 개발 연구 총괄, 감독, 확인하는 관리적 내용 반영
 - ** (연구기관) 무인이동체 리빙랩 추진 시 연구기관에서 해야 할 관리적 내용 반영

< 관리지표 >

@EL7II	○비그리스트 (○ 하이 › 차조)	3		
①단계	②체크리스트 (○ 확인, △ 참조)	연구기관	감독기관	
	• 리빙랩 운영계획을 구체화했는가?	0	Δ	
	• 실증 방안은 정의되었는가?	0	0	
	• 실증 참여 해경대원에 대한 보상 방안은 마련되었는가?	0	0	
	• 무인이동체 개발 성공에 대해 정의하고, 모두 합의하였는 가?	0	0	
	• 리빙랩 구성원에게 리빙랩의 목적, 범위 등을 충분히 이해 시켰는가?	0	Δ	
	• 리빙랩 실증 범위, 이해관계자 범위, 주체별 역할, 실증방식 등에 대한 협의가 충분히 이루어졌는가?	0	Δ	
운영·환류	• 임무에 대한 상황을 인지했는가?	0	0	
	• 임무 실증결과에 대해 이해했는가?	0	0	
	• 현장의견을 훼손하진 않고 취합할 수 있는 방법을 강구했는가?	0	Δ	
	• 리빙랩 추진 공간에 대한 협의는 이루어졌는가?	0	Δ	
	• 리빙랩 운영 일정은 결정되었는가?	0	Δ	
	• 리빙랩 운영이 추진 일정에 따라 진행되고 있는가?	0	0	
	• 리빙랩 목적과 기획 방향에 부합하도록 운영되고 있는가?	0	0	

①단계	②체크리스트 (○ 확인, △ 참조)	3		
UL'AI		연구기관	감독기관	
	• 리빙랩 운영과정에서 계획 변경 등 문제는 없으며, 문제 발생 시 해결방안이 타당하게 제시되고 있는가?	0	0	
	• 구체적인 리빙랩 활동과 성과는 무엇인가?	0	0	
	• 적절한 방식으로 현장의 의견을 수렴했는가?	0	Δ	
	• 무인이동체 시제기를 운영하는가?	0	0	
	• 리빙랩 참여자에 대한 만족도 조사의 기준이 적절한가?	0	Δ	
	• 조사는 적합한 주체와 방식을 통해 이루어지고 있는가?	0	Δ	
	• 과정별로 리빙랩 참여자의 만족도를 평가했는가? (설문조 사 등)	0	0	
	• 최종 무인이동체 시제기를 개발 완료하였는가?	0	0	
	• 리빙랩 참여자에 대한 기여도 조사의 기준이 적절한가?	0	Δ	
	• 조사는 적합한 주체와 방식을 통해 이루어지고 있는가?	0	Δ	
	• 리빙랩 참여자의 최종 만족도를 평가하였는가? (설문조사 등)	0	0	
	• 리빙랩 참여자가 무인이동체의 임무완수에 대한 기여도를 평가하였는가? (설문조사 등)	0	0	
사후관리	• 평가결과는 개발된 무인이동체의 수용성 제고를 위해 기술 개선에 활용되고 있는가?	0	Δ	
	• 리빙랩의 목적을 달성했다고 판단할 수 있는 객관적인 방법을 찾아냈는가?	0	Δ	
	• 최종 결과를 어떤 방식으로 표현할 것인가?	0	0	
	• 향후 개선되거나 보완되어야 할 사항은 무엇인가?	0	Δ	
	• 지속적인 모니터링과 점검을 하고 있는가?	0	Δ	

- (리빙랩 성과지표) 리빙랩을 통해 무인이동체 개발의 당초목표(대 형화재 초기진화 후 실내수색 임무 완수)를 달성하였는지 평가
 - (무인이동체 개발) 무인이동체 해경대원들이 요구한 성능 대비 실제성 능이 구현되었는지에 대한 달성도 측정
 - (임무목표 달성도) 개발한 무인이동체가 근해 해난사고 요구조자 수색 및 구조임무를 달성할 수 있을 것인지를 해경대원의 평가로 측정
 - (임무실증 완성도) 임무실증 과정에서 당초 리빙랩 실증을 통해 계획한 목표 실증횟수를 실제 충족했는지, 리빙랩 구성원인 해경대원 및 전문 가가 제시한 기능·운용·제도 등에 대한 의견을 충실히 반영했는지 측정

구분	성과지표	측정방법	목표값	가중치
무인이동체 개발	성능목표 달성도	무인이동체 실제성능(실적)/무인이동체 성능목표(계획)x100	80	0.3
임무목표 달성도	해경대원 만족도	실증참여 해경대원 대상 만족도 조사 리커트척도 5점의 평균값(100점 환산)	80	0.4
이미시즈	실증 충실도	실제 현장실증 횟수(실적)/목표 현장실증 횟수(계획)x10	80	0.15
임무실증 완성도	리빙랩 구성원(해경대원·전 문가) 의견 반영도	리빙랩 구성원 의견반영 건수(실적)/현장의견 제출 건수x100	80	0.15

4 향후 활용 계획

- 매뉴얼 개발 및 해경대원 대상 교육훈련 추진(~30년)
- 무인이동체 생산기업 기술이전 및 양산을 위한 구매조달 연계 지원
- 무인이동체 시범운용 사업을 추진하여 운용 해양경찰서 확대
 - 실증참여 해양경찰서에서 해난사고 집중지역 및 전국 해양경찰서로 확대
 - * 확산계획(안) ('30) 3개서 \rightarrow ('31) 10개서 \rightarrow ('35) 30개서
- 예산확보 : 해경청 장비구매 예산시 무인이동체 구매예산 확충

7

연차별 투자계획

Ⅱ 개발 소요예산(정부출연금)

- 본 사업에서 개발하는 대형화재 및 해난사고 현장 임무수행을 위한 무인이동체 개발 소요예산은 아래와 같이 소요됨
 - 각 개발체계에 요구되는 성능 및 기능 개발에 소요되는 예산에 대하여 유사과제 비교 및 다수 전문가 교차검토를 통해 도출

< 내역별 연도별 투자계획 >

(네틱을 한도를 구자계획 /									
구분	2025년	2026년	2027년	2028년	2029년	합계			
내역1. 소방임무	30	45	45	40	40	200			
드론	11	17.5	18	18	18	85			
UGV	14.5	20.5	19	16	15	80			
GCS/통신	4.5	7	8	6	7	35			
내역2. 해경임무	30	50	50	35	35	200			
드론	12	20	20	16	16	81			
무인선	6	11	11	9	9	48			
자율구명정(소형)	2	4	3	2	2	13			
자율구명정(중형)	4	7	6	2	2	21			
통신/관제	6	8	10	6	6	37			
부처별	60	95	95	75	75	400			
 과기정통부	60	95	95	75	75	400			
행정안전부									
소방청		협조 및	수요부처로	별도 소요여	산 없음				
해양경찰청									

② 민간부담금 및 총사업비 산출

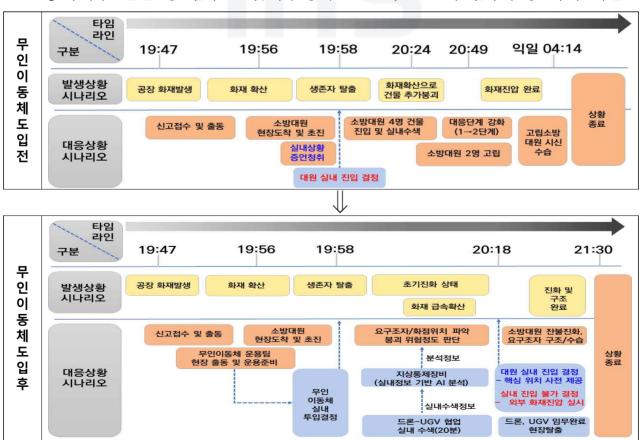
- 본 사업은 기술개발뿐 아니라 대형화재 및 해난사고 현장에서 임무를 수행할 수 있는 시제기 개발이 필수적임
 - 또한 연구개발사업 종료 이후 재난임무용 무인이동체의 적용확대를 위해 무인이동체 공급 및 MRO의 후속추진도 필요함
- 이를 위해 출연(연)·대학뿐 아니라 산업체의 연구 참여가 수반되어야 하며, 추후 사업추진이 추진되어 사업단 공모시 연구수행에 산업체의 참여를 조건으로 설정
 - 국가연구개발 관계 법령에 따라 기업체가 참여할 때 부담금을 산정함
 - 산정한 기업체부담금(민자)를 합산한 총사업비는 433.2억원

< 내역별 민간부담금 산출 >

내역	소요예산	기업참여 비율	중소기업 분담률	기업체 부담금(민자) [*]	총사업비 (국비+민자)	
내역1	200억원	25%	25%	16.6억원	216.6억원	
내역2	200억원	23/0 23/0	16.6억원	216.6억원		
계	400억원			33.2억원	433.2억원	

- ※ 향후 선정된 기관들의 형태(출연연, 대학, 기업체 등)에 따라 변동 가능
- * 국가연구개발혁신법 시행령 제19조에 따른 중소기업 기관부담연구개발비 부담비율에 따라 기업체부담금 산정

8


기대성과 및 기대효과

□ 성과목표/지표

부처	성과지표	구분	′25	′26	′27	′28	′29	2025목표치 산출근거	측정산식 (또는 측정방법)	자료수집방법 (또는 자료출처)			
		목표	60	65	70	80	90	신규지표임을	무인이동체 개발 리빙랩 참여 소방 및 해경 대원 대상				
	현장 만족도 (단위: %)	실적	-	-	-	-	-	감안하여 보통 이사이 60저으	리빙랩 잠여 소방 미 체겨 대의 대사	설문조사			
	(간기, 70)	달성도	-	-	-	-	-	신규지표임을 감안하여 보통 이상인 60점을 목표치로 설정	만속도 조사				
	 개발 및 실증	목표	60	65	70	75	80	신규지표임을	마일스톤 단계별 기술 및 리빙랩 전문가가 연구개발 및 실증의 완성도를				
	개발 및 실증 완성도 (단위: %)	실적	-	-	-	-	-	사업 진도를 객관적으로 측정할 수 있는 대표적인	감안하여 보통	감안하여 보통	감안하여 보통	기울 및 다양답 전문가가 연구개발	설문조사
공통	(단위: %)	달성도	-	-	-	-	-		및 실증의 완성도를 평가				
00	재난안전	목표	20	40	60	80	100		[측정산식] 진도율 = 통과 마일스톤				
재난인 임무(무인이) 개발 사업진((단위: '	무인이동체 개발	입구용 구인이동체 실적 SDR: 시스템설계 개발 - PDR: 기본설계 중	마일스톤의 통과여부를 성과지표로 설정함 - SDR: 시스템설계 종료 - PDR: 기본설계 종료 - CDR: 상세설계 종료 - FFRR: 초도 비행시험	= 등의 미글 <u>··</u> 수/5 *통과 마일스톤 : SDR ,PDR, CDR,	SDR/PDR/CDR/FF RR1·2 Exit Criteria								
	(단위: %)	달성도	-	-	-	-	-	- CDR : 상세설계 종료 - FFRR : 초도 비행시험 준비 종료	FFRR1, FFRR2				

□ 개발 성과

○ 대형화재 초기진화 현장(실내 복사열 200°C 이상)에서 화점 및 생존자 수색, 붕괴여부 진단 등 임무를 협력수행하는 드론, UGV과 임무수행 체계 개발

해상상태 4 수준의 근해 해상에서 자율협력하여 조난자를 신속히 수색・ 구조하는 드론, 무인선, 자율구명정과 임무수행 체계 개발

□ 성과 활용계획

시나리오

흐

혁신조달 연계하여 혁신품목으로 등록 추진

전파

(가용 구조세력

도워요천)

소방청, 해경청 등 수요부처 주도 시범운용 확대 및 사업화 지원

수색/구조 임무할당

자율

구명정투하 및

초동조치

USV

드론

구조 포인트 공유

구조이동

자율 구명정

위치

모선송신

드론/USV 수색범위

확대 및 구조활동 반복

□ 인허가. 규제 개선 등과 관련된 사항

사고 대비

태세 유용

- 무인이동체 운용 시 발생하는 보안, 책임소재 등 지침마련 필요
- 재난현장표준작전절차(SOP) 등 대응매뉴얼 고도화 필요

□ 기대효과

- 대응이 점차 어려워지는 대형화재 및 해난사고에 대한 대응력 제고
- 대형화재·해난사고 발생 시 무인이동체 선제 투입으로 현장대원 사고 등 인명피해 10% 저감하여 국민의 생명 보호



붙임1 사업 공동주관 부처·청 협의내용

□ 사업 공동주관 부처·청 협의내용

협의 기관 (회의 일시)	협의 및 자문 내용
	○ 주요 협의자 - 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 국립 재난안전연구원 R&D관리ㆍ평가센터
과기정통부, 행정안전부, 국립재난 안전연구원,	 협의 및 자문내용 재난안전 관련 무인이동체 적용 필요성 및 수요제기 요청 재난현장 무인이동체 적용시 고려사항 재난안전 R&D 협업 포인트 발굴
한국연구재단 (2/5)	
	 주요 협의자 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 소방청 기획재정담당관
	o 협의 및 자문내용 - 재난안전 임무용 무인이동체 개발사업 추진방향(안) 및 총괄위
과기정통부, 행정안전부, 소방청	구성 운영계획(안) 검토 - 사업 추진체계 개편 - 부처별 예산규모
(2/29)	재난안전 임무용 무인이동체 개발사업 다부처 회의 방명록 2024.02.29(목) 소속기관 성명 직체 서명 과기정통부 유합기술과 최민호 주무관 시 인호 행정안전부 이숙화 사무로 의 선 분

소속기관	성명	직책	서명
과기정통부 용합기술과	최인호	주무관	刘 空走
행정안전부 재난안전연구개발과	이순화	사무관	01 5 21
인터졘컨설팅(주)	김재정	책임	71 m 28
ない き	바음성	02+22	y 3 08
4	01 43 81	014%	0111121

협의 기관 (회의 일시)	협의 및 자문 내용											
과기정통부, 행정안전부, 소방청,	 주요 협의자 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 소방청 기획재정담당관, 해양경찰청 장비기획과 협의 및 자문내용 											
해양경찰청 (3/4) *화상회의	 접의 및 사군대용 해양경찰청의 참여의사 확인 재난안전 임무용 무인이동체 개발사업 추진방향(안) 및 총괄위 구성 운영계획(안) 검토 부처별 예산규모 											
	 주요 협의자 과기정통부 융합기술과, 행정안전부 재난안전연구개발과, 소방청 기획재정담당관, 해양경찰청 장비기획과 											
과기정통부 행정안전부, 소방청,	 협의 및 자문내용 부처별 예산규모 부처 MOU 추진여부 현장부처에서 제시한 임무수요 구체화 1차 총괄기획위원회 운영 계획 공유 											
해양경찰청	보신대응 외부를 무진이동에 개발시합 단무사 위의 경영목											
(3/8)	2029 (S) (B) (S) (B) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S											
	の目標を 有別できた gett からか 知, 57.35.											
	10 A 4 C											
	ANN 1648ANG 648 040 4147											
	MATERIAL BUILDS FORD THE SOURS											
	10 (S) 10 (S) 10 (S)											
	# 20 10 10 10 10 10 10 10 10 10 10 10 10 10											
	9,000 9,00											
	世 m 1 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4											
I												

사업 공동주관 부처·청의 사업필요성 및 참여의지

[과학기술정보통신부 다부처공동기획사업 공동기획연구] 재난안전 임무용 무인이동체 개발사업 공동기획연구

아래와 같이 부처별 참여의견을 요청함

소속 : 과거청통부 성명 : 최 인호 직책: 구우반 서명 : 최 인호 [부처별 주관/참여 의견]

1. 본 연구내용에 대한 필요성 의견

नाम केर समुद्र म्रावहीं अष् FRD र क्रेडिंग श्रीति न्त्र क्रिक्न मंद्रक्री इंद्रकृ (स्टक्सन नामस अस म्येड्सन क्रेश्नाम अद्वेर प्रीट ने देशकी अवद्द नी में में हैं)

2. 본 연구에 대한 해당 부처의 참여 의견

35018 105

[과학기술정보통신부 다부처공동기획사업 공동기획연구] 재난안전 임무용 무인이동체 개발사업 공동기획연구

아래와 같이 부처별 참여의견을 요청함

소속: 행 원년 성명: 시 도 화직책: 5급 서명: 이 등인. [부처별 주관/참여 의견]

1. 본 연구내용에 대한 필요성 의견

O FREY ALCOEN ROD NIGE 38/6 考院可从 小古物 老 观社 小花彩

2. 본 연구에 대한 해당 부처의 참여 의견

० र लील) आहमाम, श्रेकेंड खेल्पूने जा मेनर 网络的 四升 对于 智同计独当

[과학기술정보통신부 다부처공동기획사업 공동기획연구] 재난안전 임무용 무인이동체 개발사업 공동기획연구

아래와 같이 부처별 참여의견을 요청함

소속: 소방 참 성명: 방송영 직례: 거강 서명: /5/10 [부처별 주관/참여 의견]

- 1. 본 연구내용에 대한 필요성 의전 가는 소이부 , 소이가 재명성 A & D 사이 이 주인되모든 이 은 한고 1일을 의 수에가 있는 → 기온 Q&D 주에서 문제작은 첫문자에 라이지를 무어 전2 대본부위되니 라무슨 첫 만든 통해 한일 경우성 생활기

 - → ड्लेम्स्य ४९६० वर्षे डंपोर्थ्स वरेन्छिष्ट

2. 본 연구에 대한 해당 부처의 참여 의견

¥ 33 社中

[과학기술정보통신부 다부처공동기획사업 공동기획연구] 재난안전 임무용 무인이동체 개발사업 공동기획연구

아래와 같이 부처별 참여의견을 요청함

소속 : 하네데데 성명 : 10년체 직례: 해떠나 서명 : 10년에 [부처별 주관/참여 의견]

1. 본 연구내용에 대한 필요성 의견 Tanon 2086 5

2. 본 연구에 대한 해당 부처의 참여 의견 기병,여각 Chancel 국용하다. 78학자 기병을 첫째나 바빴다 작성나다 형

붙임2

재난안전 무인이동체 스펙조사

가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	경인테 크	KCR30 0	상용화 완료	해상	2420 x 2450 x 1160	780			1.8			전기	- 스캐닝소나 * 최대 탐지거리 200m * 실시간 탐지거리 15m - 초음파카메라 - Metal Detector 고도계 - 고해상도카메라
한국	그리폰 다이나 믹스	Catche r Drone	상용화 완료	공상 (회전익 -쿼드 콥터)	1200 x 1200	18	7	25	50	20분	10	전기	- 주야간 영상감지기 - 포획건
한국	나르마	AF100	상용화 완료	공상 (복합형)	1000 x 1000	7	1	8	100			전기	
한국	나르마	AF200	상용화 완료	공상 (복합형)	1800 x 1800		5	22	60	25분		전기	
한국	네스앤 텍	SWID	상용화 완료	공상 (회전익 -쿼드 콥터)	860 x 860 x 500	5.5	0.5	6	36	30분	5	전기	
한국	네스앤 텍	SWID- ex	상용화 완료	공상 (회전익 -쿼드 콥터)	1000 x 1000 x 800	11	2.5	8.5	36	30분	5	전기	- 소형 포탄
한국	네스앤 텍	SWID- Tether	상용화 완료	공상 (회전익 -쿼드 콥터)	860 x 680 x 500	5.5	0.5	6		240분		전기	

국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	네스앤 텍	XeFi	상용화 완료	공상 (회전익 -쿼드 콥터)	690 x 690 x 340	3	0.5	2.5	36	30분	5	전기	
한국	네스앤 텍	STING RAY	상용화 완료	공상 (고정익)	1740 x 1740 x 900	3	0.4	2.6	80	60분	5	전기	
한국	네온테 크	ND-82 0B	상용화 완료	공상 (회전익 -옥타 콥터)	2000 x 2000	38	10	48		40분		전기	
한국	넥스컴 스	AFOX- 1T	상용화 완료	공상 (회전익 -헥사 콥터)	1260 x 1260 x 540	16	8	26	25	13분		전기	- 액제탱크 및 분사 노즐 - 라이다 고도보정 센서
한국	넥스컴 스	AFOX- 2A	상용화 완료	공상 (회전익 -옥타 콥터)	1260 x 1260 x 540	22	10	32	25	13분		전기	- 액제탱크 및 분사 노즐 - 라이다 고도보정 센서
한국	넥스컴 스	Narae- 35	상용화 완료	공상 (회전익 -옥타 콥터)	1980 x 1980 x 600	35						전기	

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	다온아 이앤씨	Swarm Drone system	상용화 완료	공상 (회전익 -쿼드 콥터)	350 x 350 x 200	1.16				16분		전기	- LED 라이트 - 연막, 불꽃, 폭탁 모듈 교체 가능
한국	대양전 기공업	MDV(Mine Dispos al Vehicle)	상용화 완료	해상									-소나 * 원거리 및 근거리 탐색 거리 확대
한국	대양전 기공업	Sea Rover A 100	상용화 완료	해상	750 x 2700 x 600	120			4노트	10시간			- 수중 환경 센서
한다	대양전 기공업	Sea Rover R 100	상용화 완료	해상	740 x 540 x 360	40			2노트			전기	- 수중카메라, 소나, 수중 환경센서
한국	대양전 기공업	H-ROV (Hybri d – Remot ely Operat ed Vehicle	상용화 완료	해상	970 x 830 x 370	70			2노트	4시간			-광통신 시스템 -USBL

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	대양전 기공업	해미래 원격제 어로봇(R emotel y Opeara ted Vehicle	상용화 완료	해상	3300 x 1800 x 2200	3660			1~1.5노트				-로봇팔 -카메라
한국	대양전 기공업	UUV(U nmann ed Under water Vehicle Launch er - 비중장 해수수치	상용화 완료	해상	2700 x 750 x 600	1100							- 심해 카메라
한국	대한항 공	KUS-V H	상용화 완료	공상 (고정익)	7000	1350			250	5시간		내연기관	- 고성능 임무 장비
한국	대한항 공	KUS-V T	상용화 완료	공상 (복합형)	3500 x 5200	190	30	220	220	6시간			- EO/IR - LRF
한국	대한항 공	KUS-H D	상용화 완료	공상 (회전익 -쿼드 콥터)	2000 x 2000	28	6	34	75.6	2시간		하이브리드	- EO/IR - Hyper Spectral 카메라 - Cargo Bay
하다	두산모 빌리티 이노베 이션	DS30 W	상용화 완료	공상 (회전익 -옥타 콥터)	1,850 x 1,850 x 815	20.9	3			120분		수소	

가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	두시텍	KnX	상용화 완료	공상 (회전익 -쿼드 콥터)	343 x 343 x 250	2		2.3	40	25분		전기	- 카메라 4K 저장, HD 전송
한국	두시텍	KnX2	상용화 완료	공상 (회전익 -쿼드 콥터)	360 x 360 x 185	2			40	25분		전기	- 카메라 4K 저장, HD 전송
한국	드론아 이디	Intel® Falcon ™ 8, Unman ned Aerial System (UAS)	상용화 완료	공상 (회전익 -옥타 콥터)	768 x 817 x 160	1.2	0.8	2.8		26분		전기	- Sony Alpha 7R 36MP 풀프레임 DSLM 카메라 - ZS50 열화상 카메라 - Sony Sonnar 35mm f/2.8 ZA 렌즈
한국	디브레 인	SDM-1 10	상용화 완료	공상 (고정익)	710 x 3820 x 970	88	22	110	100	3시간	30		
한국	디스이 즈엔지 니어링	SHIFT RED	상용화 완료	공상 (회전익 -쿼드 콥터)	6.12 x 6.12	0.093				13분		전기	- 카메라 FHD (5MP)
한국	로보스 텍	ROVO- 3	상용화 완료	해상	560 x 390 x 340	19.5	2						- 기본 카메라 1080p HD Video - LED 라이트 4x1500 lumens - Image Sonar - Manipulator - Gopro 카메라 - 수평 4, 수직 4 추진기

가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	로보스 텍	ROVO CEAN	상용화 완료	해상	500 x 490 x 330	18	2			3시간		전기	- 기본 카메라 1080p HD Video - LED 라이트 4x1500 lumens - Image Sonar - Manipulator - Gopro 카메라 - 수평 4, 수직 4 추진기
한국	마린리 서치	APACH E 6	상용화 완료	해상	1830 x 530 x 350	15							- NORBIT iLiDAR 매핑 센서 * 해양 및 육상 고정밀 3D 측량 - 듀얼 프로펠러 시스템 - GNSS IMU 센서 - LIDAR 스캐너
한국	마이크 로드론 코리아	MDK-1 000	상용화 완료	공상 (회전익 -쿼드 콥터)	1030 x 1030 x 600	6				40분		전기	
한국	인투스 카이	Vandi- S1+	상용화 완료	공상	2422 x 2204 x 730	22.5	16	38.5	25.2		3.5	전기	
한국	메타비 스타	Liquid Hydro gen Drone	상용화 완료	공상 (회전익 -헥사 콥터)	2200 x 2000 x 660	10	3	13		8시간		수소	- 기체(단기체공용) 또는 액체(장기체공용) 수소연료 선택 탑재 가능

가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	무지개 연구소	Scorpi on-O	상용화 완료	공상 (회전익 -쿼드 콥터)	590 x 590 x 290	5.5				20분		전기	- ARION IMC 인공지능 SW - 3축 짐벌 카메라 FHD 영상 촬영
한국	바이로 봇	BRC-1 05	상용화 완료	공상 (회전익 -쿼드 콥터)	138.8 x 138.8 x 34.8	0.0548				8분	0.1	전기	
한국	베셀에 어로스 페이스	SCAN NER-M C2	상용화 완료	공상 (회전익 -쿼드 콥터)	600 x 500 x 190	3.2	0.3	3.5		25분			- 임무장비 교체 탑재 기능
한국	베셀에 어로스 페이스	SCAN NER-3	상용화 완료	공상	2890 x 1105			4.9	100	90분	10		
한국	샘코	Duodr one-V M	상용화 완료	공상 (고정익)	1400 x 2200	4.5	0.4	5	61	60분			
한국	샘코	RIVERE YE	상용화 완료	공상 (회전익 -헥사 콥터)	1800 x 1100	37	7	44		60분	20	하이브리드	
한국	샘코	Duodr one-V A	상용화 완료	공상 (복합형)	2600 x 1500	11.5	2	13.5	126	60분			- 최대 2kg 임무장비 탑재 가능
한국	샘코	Duodr one-V	상용화 완료	공상	2200 x 1400		1	13	54	60분		전기	

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
하다	샘코	Duodr one-W B	상용화 완료	공상 (복합형)	3000 x 1200	12	1	4.2	72	60분			
하기수	샘코	Duodr one-E N	상용화 완료	공상 (복합형)	3200 x 2000	24	2.5	26.5	126	180분			- 최대 2.5kg 임무장비 용량 - 항재밍 모듈 (재밍 신호 대응 가능)
하자	석문전 기	10L class Drone(Skylark)	상용화 완료	공상 (회전익 -헥사 콥터)	1765 x 1765 x 630	14.8	10	24.8	28	18분		전기	
가나	석문전 기	20L class Drone(Falcon)	상용화 완료	공상 (회전익 -헥사 콥터)	2175 x 2175 x 700	28	20	48	10	15분		전기	
하다	성우엔 지니어 링	ARGOS -HY	상용화 완료	공상 (고정익)	1530 x 2720 x 570	16.7	2	18.7	80	60분	15		- Multi Adaptable 임무장비 탑재 -광학/적외선카메라,다 중분광카메라탑재
한국	성우엔 지니어 링	MPUH	상용화 완료	공상 (회전익 -헬리 콥터)	3264 x 1302 x 1317	118	60	200	150	360분			

									기체 사양					
	국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
-	하	성우엔 지니어 링	SD-BA T	상용화 완료	공상 (고정익)	3000 x 2000 x 500	12	1.5	16.5	150	240분			- DSLR 고성능 카메라 탑재
7	화 국	세이프 어스드 론	Volt-S pider	상용화 완료	공상 (회전익 -쿼드 콥터)	1000 x 1000 x 600	10						전기	
-	화국	세이프 텍 리서치	Auto- Naviga tion System for Unman ned Surfac e Vehicle	상용화 완료	해상									- 관제 S/W - 탑재 S/W - 장애물 탐지 및 자동회피 S/W
	<u></u> 한 국	세이프 텍 리 서치	Unman ned Surface Vehicle for investi gation and monito ring of inland water	상용화 완료	해상	L 3200 H 3500	250			5노트	8시간 (2노트에 서)		전기	- RADAR, LiDAR, 주/야간 감시 카메라 - 수질 측정 센서 등 다양한 장치 장착 가능 - GCS 원격 제어

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	순돌이 드론	SDR M2	상용화 완료	공상 (회전익 -쿼드 콥터)	550 x 600 x 245	5			75	50분	5	전기	- 실시간 영상 송/수신, 촬영 - 주 야간 촬영 - Target Tracking
한국	순돌이 드론	SDR T-Dori(tethere d drone)	상용화 완료	공상 (회전익 -쿼드 콥터)	1200 x 840 x 660	8	4	12	43	24시간		전기	- EO/IR 카메라 - 서치라이트 - 방송 스피커
한국	순돌이 드론	SDR H-1	상용화 완료	공상	1560 x 1380 x 500	12	10	24.8	43	25분			
한국	숨비	Missio n Drone S-200	상용화 완료	공상 (회전익 -쿼드 콥터)	1139 x 1149 x 927	41	30	71		25분		전기	- 인공지능 자동 자율비행 - 구명장비
한국	숨비	SPIDER -H	상용화 완료	공상	1830 x 650 x600	10	10	16	72	60분			
한국	스마티	SD-SH 6	상용화 완료	공상 (회전익 -헥사 콥터)	1200 x 1200 x700	14	2	18	36	30분		전기	

					기체 사양								
기	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
한국	스카이 라인	Target Drone	상용화 완료	공상 (고정익)	2500 x 1000				150	60분		내연기관	
한국	스카이 라인	Ghost Hawk	상용화 완료	공상 (고정익)	3200 x 2400		5		100	120분		내연기관	
한국	스카이 라인	Air-Sea Amphi bious Drone	상용화 완료	복합형	900 x 600 x 250				비행 10km/h 수면 1m/s 잠수 1m/s				- 음향센서
한국	씨엘 멜 셀	360Rev olution VR Gimbal	상용화 완료	공상 (회전익 -헥사 콥터)									- 소니 A7S2 or A7R2 4대로 고화질 360영상VR 촬영 - 렌즈 삼양 소니E마운트 8mm 4개 - 캐논 8-15mm 메타본즈 EF-E 마운트 각각 4개
한국	아이티 원샵	FIFISH V6s	상용화 완료	해상					3.6	6시간			- 240 fps 슬로우 비디오 - 12M 픽셀 - 초광각 (166도 FOV) - 4K UHD 카메라 - 400루멘 LED조명 - RAW이미지(DNG)

									기체 사양					
	국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
;	한국	아이티 원샵	CCROV -2	상용화 완료	해상	280 x 280 x 179	8			7.2				- 6 스러스터 / 5 자유도 - 4K 카메라 및 720P 리얼 타임 트랜스미션 - 액세서리 및 로봇 팔 & GPS
;	한국	아이팝	iONE-S MART	상용화 완료	공상 (회전익 -쿼드 콥터)	883 x 883 x 398		1.45			35분	5		- EO/IR - LiDAR - Speaker - 주간 4k 광학 3.5배줌 / 열영상 640×480 / 무게 786g
;	한국	아이팝	ione-p Ro	상용화 완료	공상 (회전익 -쿼드 콥터)	2000 x 2000 x 600	20	17	37		30분	7		- EO/IR - LiDAR - Speaker - 주간 4k 광학 3.5배줌 / 열영상 640×480 / 무게 786g - 물류배송지그 탑재 가능 - 산불 진압시스텝 탑재 가능

									기체 사양					
	국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
-	기 국	Action Drone	AD-V W1	상용화 완료	공상 (복합형 -VToL)	2500 x 1486	5.5	2	12	126	50분	200	전기	
[-	기 국	Action Drone	AD-F	상용화 완료	공상 (회전익 -쿼드 콥터)	920 x 1470 x 500	3.7	3	9	54	45분	3	전기	- Plug and Play Systems
:	기국	Action Drone	AD1-V 2	상용화 완료	공상 (회전익 -쿼드 콥터)	610 x 610			2.3	54	40분	2	전기	- GoPro Hero 3, 4, 5, 6, or 7 Black - GoPro Hero 2018 - FLIR Vue Pro Thermal - FLIR Duo Thermal/HD Camera - Sony RX100 - Small multi-spectral sensor
[기국	Advan ced Aircraft Compa ny	HAMR(Hybrid Advan ced Multi Rotor)	상용화 완료	공상 (회전익 -헥사 콥터)	1651 x 3302 x 483	14.5	2.7	18	46	210분		하이브리드	- Nose Payload Bay - Camerta turret less than 127mm / 1.4kg - Trillium HD-40 - Next Vision Systems DragonEye 2 - Sony A7R4 61MP Camera - Rock Robotics T2A

								기체 사양					
7	^Ң 제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
큪	Advan ced Aircraft Compa ny	Grease d Lightni ng	시제 개발 완료	공상 (복합형 -날개 회전용 옥타콥 터)	Wingspan: 3050			28				하이브리드	
=	Aero System s West	ILM - Quadc opter	상용화 완료	공상 (회전익 -쿼드 콥터)	1158 x 1158	7	5	12	36	43분	26	전기	- 소형 짐볼 및 카메라 - 소형 GIS용 라이다 장비 - plug and play systems
= =	Aero System s West	HLM - Quadc opter	상용화 완료	공상 (회전익 -쿼드 콥터)	1505 x 1505 x 607	16	14	32	31	50분	31	전기	- 중형 및 대형 짐볼/카메라 - 중형 GIS용 라이다 장비 - 소형 Granule Spreader
<u>-</u>	Aero System s West	HLM Hexac opter	상용화 완료	공상 (회전익 -헥사 콥터)	1658 x 1658 x 607	24	25	45	36	55분	33	전기	- 소형/중형 택배 배달 - 대형 카메라 및 대형 짐볼 장착 가능 - 대형 라이다 장비 - 중/대형 Granule Spreader - 액체 살포 시스템

									기체 사양					
	국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
[기 국	Aero System s West	HLM Octoco pter	상용화 완료	공상 (회전익 -옥타 콥터)	2107 x 2107 607	43	38	72	36	50분	33	전기	- 대형 택배 배달 - 다수 초대형 카메라 및 짐볼 시스템 - 초대형 라이다 장비 - 초대형 granule spreader - 액체 살포 시스템
[Aerovir onmen t	Jump 20	상용화 완료	공상 (고정익 -VToL)	5700 x 2900		13.6	97.5	92.6	14시간		전기	- ARCAM-450 EO - WESCAM MX-8 EO/IR - Trillium HD80 EO/IR - TASE 400LRS EO
[Aerovir onmen t	Puma AE	상용화 완료	공상 (고정익)	4600 x 2200	10.7	2.5	12.2	76	6.5시간		전기	- Mantis i45 * EO/IR Camera(15mp, 50x zoom), Low Light Camera, NVG-Visible Laser Illuminator

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	Aerovir onmen t	Raven RQ-11 B	상용화 완료	공상 (고정익)	1400 x 900	1.9		1.9	81	90분	10	전기	- 고성능 EO/IR(상세정보 미공개) - IR Pointer 탑재된 짐볼
미국	Aerovir onmen t	Wasp AE RQ-12 A	상용화 완료	공상 (고정익)	1400 x 900	1.9			81	90분		전기	- 고성능 EO/IR(상세정보 미공개) - IR Pointer 탑재된 짐볼
미국	Aerovir onmen t	Quanti x Recon	상용화 완료	공상 (고정익 -VToL)	Wingspan: 975			2.3		45분	2	전기	- 18mp Camera
미국	Aerovir onmen t	Vapor 55	상용화 완료	공상 (회전익 -헬리 콥터)	2560 x 670 x 580		4.5	24.9		1시간	8	전기	- EO/IR Sensor - Lidar - PPK Mapping - Multi-payload
미국	Aerovir onmen t	Telema x EVO Pro	상용화 완료	지상	775 x 400 x 750	77			10	10시간		전기	- 카메라(QuadView) - 통신도구(IP Mash Radio Network) - 팔 집게 도구(7축) * 집게 넓이: 120mm * 집게 운용 최대 높이: 2690mm

									기체 사양					
7	국 가	데조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
=	Ai oi	serovir onmen t	Telema x EVO Rescue	상용화 완료	지상	1020 x 605 x 815	51			10	8시간		전기	- 카메라 - 통신도구 - 자율주행 소프트웨어 탑재 가능 - Telemax기반 임무장치 탑재 가능
0 =	I A	AgEagl e	eBee X	상용화 완료	공상 (고정익)	Wingspan: 1160	1.4	4.6		110	90분	55	전기	- 운용 소프트웨어: eMotion(3D 자동 비행 설계 - 탑재 가능 카메라 * Sensefly S.O.D.A 3D: 3D 매핑 카메라 * Sensefly AeriaX: 고화질 카메라 * Sensefly Duet T: RGB/열화상 카메라 * MicaSense RedEdge-MX: 농업 전용 RGB 카메라 * Parrot Sequoia+: 다분광 카메라 * Sensefly S.O.D.A: 드론 전용 카메라 * Sensefly Corridor: 2D 매핑 카메라
=	l A	Agrow Drone	sUAS-e HG	상용화 완료	공상 (회전익 -헬리 콥터)	총 길이: 1856	7.6	16	23.6	40	60분		내연기관	- 액체 살포 시스템(농업용 무인이동체) * 최대 11.4리터 탑재 가능

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	Agrow Drone	sUAS-e A	상용화 완료	공상 (고정익)	1956 x 1067	4.2	1.3	5.5	71	55분		전기	- 소니 29MP(4K x 2K 해상도)카메라
미국	Agrow Drone	sUAS-e 8	상용화 완료	공상 (회전익 -옥타 콥터)	610 x 610 x 457	5	15	20	89	47분		전기	- Micasense Rededge MX: 다목적 카메라 - Micasense Altum: 열영상/다분광 카메라 - Micasense Deual: RGB/IR 카메라 - Flir Duo Pro: 드론용 EO/IR - Revolution 12: 라이다 - 45mp Global Shutter: EO 카메라
미국	Agrow Drone	sUAS-e M	상용화 완료	공상 (회전익 -쿼드 콥터)	610 x 610 x 457	4.4	15.6	20	89	36분		전기	- RGB/열영상 카메라 * 해상도: 4000 x 3000 / 640 x 512 * 최대 1080p60
미국	Agrow Drone	sUAS-e A	상용화 완료	공상 (회전익 -쿼드 콥터)	1955 x 1067	4.2	1.3	5.5	71	55분		전기	- 소니 29MP(4K x 2K 해상도)카메라
미국	Airgilit y	DS-1 Minota ur	상용화 완료	공상 (회전익 -쿼드 콥터)	482 x 356	1.8	0.2	2.3		25분		전기	- 라이다(세부내용 미상) - 카메라

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	Airgilit y	HS-1	개발 중	공 상 (복합형 -날개 달린 듀얼콥 터)	1372 x 1727			25					
미국	Airgilit y	MS-1	개발 중	공 상 (복합형 -날개 달리 듀얼콥 터)									
미국	Applie d Aerona utics	Albatr oss	상용화 완료	공상 (고정익)	Wingspan: 3000		4.4	10	140	4시간	40	전기	- Survey3W: 농업용 RGN, NDVI 카메라 - Sony A6000: 24.3MP 카메라 - Flir Vue Pro: 열화상 카메라 - Colibri 2: EO/IR
미국	Ascent Aerosy stems	Spirit	상용화 완료	공상 (회전익 -신개념 듀얼콥터)	257 x 106	1.8	4.3	6.1	100	38분	20	전기	- EO/IR 센서
미국	Bell Flight	Bell APT 70	개발 중	공상 (복합형 -고정익 VToL	1829 x 2743		45	165	86		56	전기	
미국	Bell Flight	Bell V-247	개발 중	공상 (복합형 -VToL)			내부/외부: 907 / 4082		556	10시간	1667	전기	

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	BFD System s	SE-8	상용화 완료	공상 (회전익 -쿼드 콥터)	1399 x 1399 x 553	7.6	11.7	25		1시간		전기	
미국	Centey e Drones	Nano UAS	개발 중	공상 (회전익 -쿼드 콥터)	60 x 60	0.038						전기	- 스테레오 비전 카메라
미국	Cleo Roboti cs	Dronut X1	상용화 완료	공상	165 x 102	0.43			14.4	12분	0.8	전기	- 4k 카메라(4224 x 3200, 30fps) - 3D 라이다 - Global shutter Camera
미국	Corvus Roboti cs	Corvus One	상용화 완료	공상 (고정익)	63.5 x 63.5				4.8			전기	- OCR / 바코드 스캐너
믹국	Drago nfly	KK13	상용화 완료	공상 (회전익 -쿼드 콥터)	200 x 200 x 260	0.4				28분	1.2	전기	- 4K 카메라(와이드 앵글, 170도) - 2축 짐볼
미국	Easy Aerial	Falcon	상용화 완료	공상 (회전익 -쿼드 콥터)		3.5	2		105	45분	13	전기	

								기체 사양					
기	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	Easy Aerial	Alpine Swift	상용화 완료	공상 (회전익 -쿼드 콥터)		2.6	2.5			무제한		전기	
믹국	Easy Aerial	Albatr oss	상용화 완료	공상 (회전익 -혜사 콥터)		3	3.8			무제한		전기	- 짐볼 카메라 - 통신 릴레이 시스템 - 스피커 - 라이다 / 레이더 - 통신 재밍 시스템
미국	Easy Aerial	Raptor	상용화 완료	공상 (회전익 -쿼드 콥터)		5.5	3		100	무제한 / 45분	20	전기	- EO/IR 카메라
미국	Flir	lon M640X	상용화 완료	공상 (회전익 -쿼드 콥터)	564 x 560 x 124			1.9	37	35분		전기	- Teledyne Flir 640 열화상 카메라 * EO카메라(12MP/82°/4 x 광학줌/10x 디지털줌) * IR센서(640x512, 60HZ)
미국	Flir	lon M440	상용화 완료	공상 (회전익 -쿼드 콥터)	282 x 145 x 124		1.8		37	35분		전기	- Flir Boson 320 열화상 카메라 * EO카메라(12MP/82°/4 x 광학줌/10x 디지털줌) * IR센서(320x256px) - 전방 장애물 감지 센서

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미 국	Flir	Skyran ger R70	상용화 완료	공상 (회전익 -쿼드 콥터)	1350 x 1350 x 450	5	3.5	8.5	50	59분		전기	- HDZoom 30 * 20MP(5184 x 3888) * 30x optical / 60x digital zoom * 3축 짐벌 - EO/IR Mk-II(Sony FCB_MA132+Flir TAU2) * EO 13MP(4192 x 3104px) / IR 640x512px * 4x digital zoom * 3축 짐벌
미국	Flir	Black Hornet	상용화 완료	공상 (회전익 -헬리 콥터)	123 x 168	0.033			21	25분		전기	- EO 영상 * 640 x 480 비디오 * 1600 x 1200 사진 - 열영상 카메라 * 160 x 120 사진/영상
미국	Flir	Firstlo ok	상용화 완료	지상		3			4.3	8시간		전기	- RAE 시스템 MultiRae Pro 센서 * 산소리벨, 일산화탄소 레벨, 유독가스탐지 - 고정 카메라: 4 x 근적외선 고정카메라 / 오디오 - 집게팔: 1.6kg lift 가능 - 발사장치/무반충 폭발물 디스럽터 : CDC CarbonFire 10 같은 3rd party 제품 호환 가능

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	Flir	SUGV	상용화 완료	지상		13.8			10	6시간		전기	- Flir LWIR 열화상카메라 - 발사장치/무반충 폭발물 디스럽터 - 집게팔: 근거리 10kg, 최대거리 5.4kg(61cm) - 고정카메라: 4개
미국	Flir	PackBo t 525	상용화 완료	지상		26.3			9.3	8시간		전기	- Flir LWIR 열화상카메라 - 레이저 거리 측정기
중국	Smartfl ycar	DF-C1 00	상용화 완료	해상	6000 x 2600 x 1400	1200	500	1700	64	4시간	260		-열화상카메라
중국	Smartfl ycar	DF-D2 00	상용화 완료	해상		15			21.6				- 자동 항해 모듈 - 야간 구조용 조명등 - 열화상 카메라 - 추진기 4개

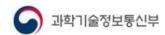
								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
중국	Smartfl ycar	DF-C4 00	상용화 완료	해상	1150 x 720 x 320	15			14.4	3시간~6시 간			- 적외선 열화상 - 카메라 팬틸트 제어 시스템
र्फान	Smartfl ycar	DF-W1 00	상용화 완료	해상	450 x 290 x 220					4시간			- 전자나침반, 내부 9축 나침반 - 1080p 카메라 - 대칭형 수직추진기 2개 - 수평추진기 4개
रुग्न	Nanjin g Fuerm osi Zhinen g Keji Youxia n Gongsi	FEMS J1	상용화 완료	공상 (회전익 -헥사 콥터)	1120 x 1120 x 520	10	5	15	72	42분		전기	
중국	SwellPr o	Splash Drone 4	상용화 완료	공상 (회전익 -쿼드 콥터)			2			30분	5	전기	- Waterproof 3-axis 4K camera

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
중국	SwellPr o	Fisher man FD1	상용화 완료	공상 (회전익 -쿼드 콥터)			2			30분	1.6	전기	
중국	SwellPr o	Splash dDron e 3+	상용화 완료	공상 (회전익 -쿼드 콥터)					65	23분			
중국	SwellPr o	Spry+	상용화 완료	공상 (회전익 -쿼드 콥터)									
중국	Power Vision	Power Egg X 8K	시제 개발 완료	공상 (회전익 -쿼드 콥터)						34분	12	전기	- 8K UHD 촬영
중국	Power Vision	Power Egg X	상용화 완료	공상 (회전익 -쿼드 콥터)	102 x 102 x 177				64	30분		전기	
중국	Power Vision	Power Eye	상용화 완료	공상 (회전익 -쿼드 콥터)	513 x 513 x 310	3950					5	전기	
중국	Power Vision	Power Dolphi n	상용화 완료	해상	533 x 228 x 127	2.3			16.2	2시간		전기	- 220° 듀얼 조인트 4K 카메라 - PowerSeeker 소나 - PowerSeeker fishfinder

								기체 사양					
구 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
KOTY	Power Vision	Power Ray	상용화 완료	해상	465 x 270 x 126	3.8			5.4	4시간	0.03	전기	- 추진기 3개(수평 2개, 수직 1개) - PowerVisions Sentimate 제어 시스템 - PowerSeeker Fishfinder
사 사	Power Vision	Power Seeker	시제 개발 완료	해상		0.11				4시간			- 소나 - 물고기 유인 조명 6개
중아	SYMA	X30	상용화 완료	공상 (회전익 -쿼드 콥터) 공상 (회전익 -쿼드)	240 x 240					27분	0.35	전기	
중국	SYMA	W1Pro	상용화 완료	공상 (회전익 -쿼드 콥터)	270 x 287					17분	0.25	전기	
중사	SYMA	X25 Pro	상용화 완료	공상 (회전익 -쿼드 콥터)	375 x 375					12분	0.15	전기	
KH TH	SYMA	X8Pro	상용화 완료	공상 (회전익 -쿼드 콥터)	500 x 500 x 190					9분	0.2	전기	
중국	SYMA	TF1001	상용화 완료	공상 (회전익 -쿼드 콥터)	225 x 173					7분	0.025	전기	

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
중국	SYMA	X27	상용화 완료	공상 (회전익 -쿼드 콥터)	103 x 103					7분	0.025	전기	
중국	SYMA	X20P	상용화 완료	공상 (회전익 -쿼드 콥터)	105 x 105					5분	0.025	전기	
중국	SYMA	Z1	상용화 완료	공상 (회전익 -쿼드 콥터)	256 x 200					7분	0.05	전기	
중국	SYMA	Z3	상용화 완료	공상 (회전익 -쿼드 콥터)	320 x 320					20분	0.08	전기	
중국	SYMA	X56 Pro	상용화 완료	공상 (회전익 -쿼드 콥터)	355 x 355					15분	0.08	전기	
중국	Cheng du Jouav Autom ation Tech	CW-00 7	상용화 완료	공상 (고정익)	2200 x 1300	6.8	1	7.8	61	90분		전기	- RedEdge-MX
중국	Cheng du Jouav Autom ation Tech	CW-10	상용화 완료	공상 (고정익)	2600 x 1600	10	2	12	72	90분	35		- RedEdge-MX - CA-102 공중용 카메라 - 라이다 - EO/IR 짐벌 카메라

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
ӃѵҠ	Cheng du Jouav Autom ation Tech	CW-15	상용화 완료	공상 (고정익)	3540 x 2060	14	3	17	61	3시간			
중아국	Cheng du Jouav Autom ation Tech	CW-20	상용화 완료	공상 (고정익)	3200 x 1800	22	3	25	100	3시간	35	하이브리드	- CA-102 공중용 카메라
상다	Cheng du Jouav Autom ation Tech	CW-25	상용화 완료	공상 (고정익)	4000 x 2100	23.5	6	29.5	100	6시간	100	하이브리드	- Phase One IXM-100 Medium Camera
중대	Cheng du Jouav Autom ation Tech	CW-25 e	상용화 완료	공상 (고정익)	4200 x 2080	19	6	25	70	4시간		하이브리드	
중단	Cheng du Jouav Autom ation Tech	CW-30	상용화 완료	공상 (고정익)	2100 x 4000	29	6	35	100	3시간		하이브리드	
중국	Cheng du Jouav Autom ation Tech	CW-10 0	상용화 완료	공상 (고정익)	3100 x 5400	92	20	112	100	10시간	200	하이브리드	


								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
프랑스	Airbus	Harfan g	상용화 완료	공상 (고정익)	16600 x 9300	1000	250	1250	204	24시간			
프랑스	Airbus	Tanan 300	상용화 완료	공상 (회전익 -헬리 콥터)	6300 x 5200	270	80	350	150	12시간	180		
피랑스	Sagem	Sperwe r Mk II	상용화 완료	공상 (고정익)	4200 x 3500		50		166	6시간	200		- EO/IR 카메라
프랑스	Sagem	Patroll er	상용화 완료	공상 (고정익)	18000 x 8500	410	250	660	200	20시간	180		
프랑스	Thales	Watch keeper	상용화 완료	공상 (고정익)	10500 x 6000	300	150	450	175	16시간	200		- EO/IR 카메라
프라	Parrot	AR.Dro ne	상용화 완료	공상 (회전익 -쿼드 콥터)	500 x 500	0.4		0.4	40	20분			
프라스	Delta Drone	Delya Y	상용화 완료	공상 (회전익 -쿼드 콥터)	1500 x 1500			2	50	45분		전기	
프랑스	Survey Copter	DVF 2000	상용화 완료	공상 (고정익)	3000 x 1200	10	1	11	97	2시간	50		
프랑스	Survey Copter	Copter 4	상용화 완료	공상 (회전익 -헬리 콥터)	2200 x 2000	21.5	8.5	30	54	2시간 30분	10		

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
프 라 스	Lehma nn Aviatio n	LP500	상용화 완료	공상 (고정익)	1160 x 1160	1.3	0.4	1.7	80	45분	3		
비하시	Parrot	ANAFI	상용화 완료	공상 (회전익 -쿼드 콥터)	175 x 240 x 65	320			55	25분		전기	- 3축 하이브리드 짐벌 * 4k HDR 카메라 * 3배 광학 줌
비하시	Delair	UX 11	상용화 완료	공상 (고정익)	Wingspan: 1100			1.5		1시간	53	전기	- 21.4MPX 카메라 - CMOS 센서
프 라 아 스	Delair	DT11	상용화 완료	공상 (고정익)	3300 x 1600	15.5	3	18.5		3시간	30	전기	- EO/IR 카메라 - 라이다
피하시	Delair	Hydro ne	개발 중	공상								수소	
프랑스	ElistAir	Orion 2	상용화 완료	공상 (회전익 -쿼드 콥터)			2	1000	225	24시간	250	전기	- EO/IR 카메라 * 30배 광학 줌 * 1080p FHD
	Azur Drones	Auton omous Securit y Drone	상용화 완료	공상 (회전익 -헥사 콥터)					50	25분		전기	- EO/IR 카메라 * 20배 줌 * HD

								기체 사양					
구 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
프랑스	현 DELAIR (구 Notilo Plus)	Bubble	상용화 완료	해상						1시간 30분		전기	- 장애물 회피용 초음파 센서 - 카메라 - 소나
프랑스	현 DELAIR (구 Notilo Plus)	Seasa m Auton omous ROV	상용화 완료	해상	550 x 450 x 230	9.6	2			4시간		전기	- 소나 - HD 저조도 카메라
프랑스	Aerius Coboti cus	Aerial Machin e	개발 중	공상 (회전익)			150						
프랑스	Turncir cles	TC411	상용화 완료	공상 (회전익 -쿼드 콥터)	450 x 330 x 310	1.5	0.5	2		1시간	21	전기	- SONY IMX219 * 3.28MP 카메라 - M2-DG64 V4 열영상 카메라 * 40x 줌 * 640 x 512 줌
프랑스	Turncir cles	TC415	상용화 완료	공상 (회전익 -쿼드 콥터)	450 x 450 x 310	3	1	4		1시간 15분	21	전기	- SONY IMX219 * 3.28MP 카메라 - M2-DG64 V4 열영상 카메라 * 40x 줌 * 640 x 512 줌

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
프랑스	Turncir cles	TC421	상용화 완료	공상 (회전익 -쿼드 콥터)	600 x 600 x 310	5.5	1.5	7		1시간 30분	21	전기	- SONY IMX219 * 3.28MP 카메라 - M2-DG64 V4 열영상 카메라 * 40x 줌 * 640 x 512 줌
프랑스	Drone Volt	Hercul es 2	상용화 완료	공상 (회전익 -쿼드 콥터)	360 x 360 x 200	1.8		1.8	90	14분	2	전기	- Viewpro Q10F * 4MP * 10x 광학 줌
프랑스	Drone Volt	Hercul es 10	상용화 완료	공상 (회전익 -옥타 콥터)	900 x 900 x 580	8.5	7.5	20	90	35분	2	전기	
프랑스	Drone Volt	Hercul es 10	상용화 완료	공상 (회전익 -옥타 콥터)	1000 x 1000 x 600	18	15	33	90	40분	2	전기	
프랑스	Drone Volt	Helipla ne	상용화 완료	공상 (복합형)	2700 x 1300 x 600	8.5	1.6	10.1		1시간	10	전기	- Colibri 2 카메라 * 20x 줌 - 라이다
프랑스	Malou Tech	MTX 4	상용화 완료	공상 (회전익 -쿼드 콥터)								전기	

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
프랑스	Malou Tech	MTX 8	상용화 완료	공상 (회전익 -쿼드 콥터)								전기	
프랑스	Malou Tech	MTXL 4	상용화 완료	공상 (회전익 -쿼드 콥터)								전기	
프랑스	Malou Tech	MTXL 8	상용화 완료	공상 (회전익 -쿼드 콥터)								전기	
프랑스	Aeracc ess	Nanoh awk	상용화 완료	공상 (회전익 -쿼드 콥터)								전기	
	Aeracc ess	Sparro whawk	상용화 완료	공상 (회전익 -쿼드 콥터)								전기	- FLIR IR 카메라 - Low Light CCD 센서
프라스	Aeracc ess	Hawke ye	상용화 완료	공상 (회전익 -쿼드 콥터)	360 x 360 x 280			2	70	20분	2	전기	- EO/IR 카메라 * IR: 640 x 512 * EO: 720px

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
비하시	Aeracc ess	Q800X	상용화 완료	공상 (회전익 -쿼드 콥터)	890 x 890			8	60	50분	15	전기	- EO/IR 카메라 * EO: 30x 광학 줌 * IR: 8x 디지털 줌 - 야간 카메라
비하시	Aeracc ess	MKII	상용화 완료	공상 (회전익 -쿼드 콥터)	685 x 600 x 320			5		40분	15	전기	- EO/IR 카메라 * EO: 1080p, 30x 광학 줌 * IR: 640p, 8x 디지털 줌 - 야간 카메라
피하시	Aliaca	Survey Copter	상용화 완료	공상 (고정익)	1850 x 3000	10.9	1.1	12	97.2	3시간	50	전기	- T 120 EO/IR 카메라
프라	Aliaca	UAV Tracker 120	상용화 완료	공상 (고정익)	1540 x 3300	7.6	1.1	8.7	90	1시간 30분	25	전기	- T 120 EO/IR 카메라
프라	Aliaca	DVF 2000 ER	상용화 완료	공상 (고정익)	2270 x 3300	20.5	2	22.5	120	7시간	50		- T 120 EO/IR 카메라
프 라아스	Helper Drone	Rescue Drone	상용화 완료	공상 (회전익 -쿼드 콥터)				3.9	55	25분	2	전기	
피랑스	Novad em	U-130	상용화 완료	공상 (회전익 -쿼드 콥터)	1300 x 1300 x 200	2.2	0.8	3	43.2	20분	1	전기	- HD 카메라 - LWIR 카메라

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
프랑스	Novad em	NX-70	상용화 완료	공상 (회전익 -쿼드 콥터)	5100 x 5100 x 1300			1	60	45분	5	전기	- EO/IR 카메라 - 열영상 카메라
비하시	Microd rones	mdLiD AR300 0DL	상용화 완료	공상 (회전익 -쿼드 콥터)				6.4		30분		전기	- Velodyne Ultra-PUCK VLP-32 라이다 - Micrdrones CMOS APS-C 26MP 카메라
비하시	Microd rones	mdMa pper10 00DG	상용화 완료	공상 (회전익 -쿼드 콥터)				6				전기	- Sony APS-C 카메라
비하시	Microd rones	mdTec tor100 0CH4	상용화 완료	공상 (회전익 -쿼드 콥터)				5.5				전기	- Pegam 메탄 검출기
프라	Sagem	Sperwe r	상용화 완료	공상 (고정익)					167	5시간	200		
러 시 아	Irkut	Irkut 3	상용화 완료	공상 (고정익)	2000 x 900 x 300	2.5	0.5	3	90	1시간 15분	15		- 열화상 카메라
러 시 아	Zala Aero Group	Zala 421-20	상용화 완료	공상 (고정익)	6000 x 550	150	50	200	220	8시간	120		- 적외선 고화질 카메라 -전자원격측정보정GPS /GLONASS시스템내재I NS

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
러시아	Zala Aero Group	Zala 421-08 M	상용화 완료	공상 (고정익)	800 x 400	2.2	0.3	2.5	125	1시간 25분	25	전기	- FHD 1080p 카메라 - 열영상 카메라 -SNS보정포함된INS(관 성항법장치) -이중무선거리측정기 -대체네비게이션시스 템ZALA
러 시 아	Orlan	Orlan 50	상용화 완료	공상 (고정익)	3800 x 2400	35	15	50	180	8시간	500		
러 시 아	Napole on Aero	Napole on Aero VTOL	상용화 완료	공상 (고정익)			400	1500			100	전기	
러 시 아	Bartini	Flying Car	시제 개발 완료	공상 (회전익 -쿼드 콥터)	5500 x 5500 x 1700			1100			150	전기	
러 시 아	Izhmas h JSC	Grusha	상용화 완료	공상					80		15	전기	- 비디오 카메라 -두대디지털카메라
러시아	Zala Aero Group	Zala 421-16 E5G HD	상용화 완료	공상 (고정익)	Wingspan: 4640		3.5	49.5	125	12시간	150	하이브리드	- FHD 1080p 카메라 -HD열화상카메라 -SNS보정포함된INS(관성항법장치) -이중무선거리측정기 -대체네비게이션시스 템ZALA -비디오네비게이션(VN S)

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
러시아	Zala Aero Group	Zala 421-16 E HD	상용화 완료	공상 (고정익)	Wingspan: 2815		1.8	10.5	125	4시간	75	전기	- FHD 1080p 카메라 - 열영상 카메라 -SNS보정포함된INS(관 성항법장치) -이중무선거리측정기 -대체네비게이션시스 템ZALA -비디오네비게이션(VN S)
러 시 아	Zala Aero Group	Zala ZDD	상용화 완료	공상 (회전익 -쿼드 콥터)	1065 x 1065 x 300	9	1	10	40	40분	15	전기	
러시아	Zala Aero Group	Zala VTOL	상용화 완료	공상 (회전익 -틸트 로터)	Wingspan: 2815	9	1.5	10.5	110	4시간	200	전기	- FHD 카메라 -적외선카메라 -24Mp내장카메라
러 시 아	Zala Aero Group	ZALA 421-10	상용화 완료	공상 (고정익)	Wingspan: 1100	4.1	0.4	4.5	130	2시간	30	전기	- FHD 1080p 카메라
러 시 아	Zala Aero Group	ZALA 421-16 EM	상용화 완료	공상 (고정익)	Wingspan: 1810	5.5	1	6.5	110	2시간 30분	50	전기	- FHD 1080p 카메라 - 열영상 카메라
러 시 아	Zala Aero Group	ZALA 421-16 E5 HD	상용화 완료	공상 (고정익)	Wingspan: 5300	24.5	5	29.5	110	6시간	150	전기	- FHD 1080p 카메라 - 열영상 카메라 -SNS보정포함된INS(관 성항법장치) -이중무선거리측정기 -대체네비게이션시스 템ZALA -비디오네비게이션(VN S)

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
러 시 아	Zala Aero Group	ZALA 421-16 E5 HD interna I combu stion engine	상용화 완료	공상 (고정익)	Wingspan: 5300	24.5	5	29.5	110	20시간	150	내연기관	- FHD 1080p 카메라 - 열영상 카메라
러 시 아	Zala Aero Group	HALL 421-24	상용화 완료	공상 (회전익 -쿼드 콥터)	540 X 540 X 190			3.6	30	30분	3.5	전기	- FHD 1080p 카메라 -SNS보정포함된INS(관 성항법장치) -전파거리측정기
러시아	Zala Aero Group	ZALA 421-22	상용화 완료	공상 (회전익 -옥타 콥터)	1065 x 1065 x 240	6	2	8	30	35분	5	전기	- FHD 1080p 카메라 - 열영상 카메라 -EO카메라 -자동표적추적시스템 -SNS(위성항법체제)보 정포함된INS(관성항법 장치) -이중무선거리측정기 -대체네비게이션시스 템ZALA
러 시 아	Zala Aero Group	CUBE- BLA	상용화 완료	공상 (고정익)	1210 x 950 x 165			3	130	30분	40		
러 시 아	Zala Aero Group	ZALA LANCE T-1	상용화 완료	공상 (고정익)		4	1	5	110	30분	40		- 안내시스템: 광전자제품과 결합된 좌표 -이미지전송TV

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
러시아	Zala Aero Group	ZALA LANCE T-3	상용화 완료	공상 (고정익)		9	3	12	110	40분	40		- 안내시스템: 광전자제품과 결합된 좌표 -이미지전송TV
러 시 아	Izhmas h JSC	Granat -4	상용화 완료	공상 (고정익)	3200 X 2600 X 450	27	3	30	145	6시간	70	내연기관	- 전자광학 및 적외선 센서
러 시 아	Orlan	Orlan 10	상용화 완료	공상 (고정익)	W: 3100, L:1800	14	2.5	16.5	150	16시간	70-150	내연기관	- 일광카메라 -열화상카메라 -비디오카메라(자이로 안정화형) -라디오송신기
러 시 아	MMS	GSV-3 7 Breeze		공상 (회전익 -헬리 콥터)	1800 X 1920 X 650			12	80	1시간 30분	0.15	내연기관	
미국	우즈홀 해양 연구소	오르페 우스(2 021)	상용화 완료	해상	1727 x 1016 x 1295	250							- 고정 방향 추진기 4개 - 17인치 유리 구형 카메라
미국	美 해양대 기청	Glider(2020)	상용화 완료	해상									

								기체 사양					
국 가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	캘리포 니아대	오징어 로봇(2 015)	상용화 완료	해상					1.2				- rack and pinion gear system * 탄성에너지 저장, 방출 - 카메라
중아국	과하하면 바라당소 나학광구	주하이 윈호(2 021)	상용화 완료	해상	W 14000 L 88500				33.3	12시간			- 지능형 이동식 해양 관측 시스템
비하시	이야디 스	젤리피 시봇(2 021)	상용화 완료	해상	700 x 700 x 520	20			3.7	자율모드 17시간 수동모드 8시간			- 전기 유압식 액추에이터 - 추진기 3개 - 온보드 카메라
비하시	Nexans	SPIDER ROV(2 017)	상용화 완료	해상									- Mesotech 1000 소나 - Mesotech 디지털 고도계 - 수중카메라 6개
미국	SEAM OR Marine	Chinoo k Inspect ion ROV(2 021)	상용화 완료	해상	384 x 686 x 406	33			3.7				- 누출 감지 경고 시스템 - 디지털 비디오 레코더(DVR)

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	Sea Machin es Roboti cs	MARC O skimmi ng vessel(2019)	상용화 완료	해상									- SM300 - 마코 필터 벨트
미국	Ocean eering	Freedo m AUV(2 019)	상용화 완료	해상									- 멀티빔 소나 - 관성 항법 시스템 - 레이저 스캐닝 시스템
미국	Riptide Auton omous Solutio ns	Riptide Micro- UUV(2 018)	상용화 완료	해상		5~16			10	80시간			- Atlas Sea Scan Arc Scout Lite 소나 - GPS
미국	The Boeing Compa ny	Echo Voyaq er(201 1)	상용화 완료	해상	15500 x 2600 x 2600	45,360			14.8				- XLUUV 내비게이션 시스템
믹	RIMPA C	Sea Hawk(2022)	상용화 완료	해상									- towed array 소나
믹	BAE System s	Riptide ™(2021)	상용화 완료	해상									
믹국	DARPA	Manta Ray UUV(2 021)		해상									
미국	Leidos	ACTUV (2016)		해상									

								기체 사양					
가	제조사	모델명	개발 현황	플랫폼	크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
미국	NUWC	Snakeh ead(20 22)	상용화 완료	해상	L 2438								-소나
미국	Boston Engine ering	GhostS wimme r(2014)	상용화 완료	해상	L 1524	45							- GPS
믹국	L3Harri s Techno logies	MUSV(2020)	상용화 완료	해상									
미국	SeaRo botics	workb oat(20 19)	상용화 완료	해상									- LARS - RADAR - 상황인식 카메라 4개
미국	APL	CRACU NS(201 6)	상용화 완료	해상									
미국	보잉& 록히드 마틴	Orca(2 017)		해상	W 2600 L 26000	50000			15		12000		
미국	Bluefin Roboti cs Corpor ation	Bluefin -12 UUV(2 019)	상용화 완료	해상	L 4830	250			11.1				- Sonardyne's Solstice Multi-Aperture Sonar - RDSM - Forward Looking Sonar - AVTRAK 6 - HD 카메라

	제조사	모델명	개발 현황	플랫폼	기체 사양								
가					크기 (mm) (W x L x H)	자체 중량(kg)	페이로드 (kg)	최대이륙 중량(kg)	최대 속도 (km/h)	운용시간	운용거리 (km)	동력원	탑재장비
시아	심해드 론 구 및 생산센 터	Аврор a(2021)		해상						6시간			- 사이드 스캔 소나 - 다중빔 음향 측심기
프랑스	ECA Roboti cs	A9(Alis ter 9)(201 7)	상용화 완료	해상	L 1700~2500	50~90				24시간			- 사이드 스캔 소나 - CTD - HD 카메라
중국	Power Vision	Power Rey(20 17)	상용화 완료	해상	464 x 274 x 139	6.4			7.4	4시간			- 4K UHD 카메라 - 수평 추진기 2개, 수직 추진기 1개
일본	미쓰비 시조선, 신니혼 카이페 리	카페리 Soleil 호(202 0)		해상	L 222000				48.2				- 자동 항법 장치 - 고속 항법장치 - 적외선 카메라
일본	MOL	미카게(Mikaq e)호(20 22)		해상									- AIS - 레이더 - 가시광 카메라, 적외선 카메라